Discrete Data Analysis With R

Download Discrete Data Analysis With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Data Analysis With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discrete Data Analysis with R

An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Graphical Data Analysis with R

See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
Scientific Data Analysis with R

In an era marked by exponential growth in data generation and an unprecedented convergence of technology and healthcare, the intersection of biostatistics and data science has become a pivotal domain. This book is the ideal companion in navigating the convergence of statistical methodologies and data science techniques with diverse applications implemented in the open-source environment of R. It is designed to be a comprehensive guide, marrying the principles of biostatistics with the practical implementation of statistics and data science in R, thereby empowering learners, researchers, and practitioners with the tools necessary to extract meaningful knowledge from biological, health, and medical datasets. This book is intended for students, researchers, and professionals eager to harness the combined power of biostatistics, data science, and the R programming language while gathering vital statistical knowledge needed for cutting-edge scientists in all fields. It is useful for those seeking to understand the basics of data science and statistical analysis, or looking to enhance their skills in handling any simple or complex data including biological, health, medical, and industry data. Key Features: Presents contemporary concepts of data science and biostatistics with real-life data analysis examples Promotes the evolution of fundamental and advanced methods applying to real-life problem-solving cases Explores computational statistical data science techniques from initial conception to recent developments of biostatistics Provides all R codes and real-world datasets to practice and competently apply into reader’s own domains Written in an exclusive state-of-the-art deductive approach without any theoretical hitches to support all contemporary readers