Discrete Choice Experiments Using R


Download Discrete Choice Experiments Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Choice Experiments Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Discrete Choice Experiments Using R


Discrete Choice Experiments Using R

Author: Liang Shang

language: en

Publisher: Springer Nature

Release Date: 2023-08-25


DOWNLOAD





This book delivers a user guide reference for researchers seeking to build their capabilities in conducting discrete choice experiment (DCE). The book is born out of the observation of the growing popularity – but lack of understanding – of the techniques to investigate preferences. It acknowledges that these broader decision-making processes are often difficult, or sometimes, impossible to study using conventional methods. While DCE is more mature in certain fields, it is relatively new in disciplines within social and managerial sciences. This text addresses these gaps as the first ‘how-to’ handbook that discusses the design and application of DCE methodology using R for social and managerial science research. Whereas existing books on DCE are either research monographs or largely focused on technical aspects, this book offers a step-by-step application of DCE in R, underpinned by a theoretical discussion on the strengths and weaknesses of the DCE approach, with supporting examples of best practices. Relevant to a broad spectrum of emerging and established researchers who are interested in experimental research techniques, particularly those that pertain to the measurements of preferences and decision-making, it is also useful to policymakers, government officials, and NGOs working in social scientific spaces.

Stated Preference Methods Using R


Stated Preference Methods Using R

Author: Hideo Aizaki

language: en

Publisher: CRC Press

Release Date: 2014-08-15


DOWNLOAD





Stated Preference Methods Using R explains how to use stated preference (SP) methods, which are a family of survey methods, to measure people’s preferences based on decision making in hypothetical choice situations. Along with giving introductory explanations of the methods, the book collates information on existing R functions and packages as well as those prepared by the authors. It focuses on core SP methods, including contingent valuation (CV), discrete choice experiments (DCEs), and best–worst scaling (BWS). Several example data sets illustrate empirical applications of each method with R. Examples of CV draw on data from well-known environmental valuation studies, such as the Exxon Valdez oil spill in Alaska. To explain DCEs, the authors use synthetic data sets related to food marketing and environmental valuation. The examples illustrating BWS address valuing agro-environmental and food issues. All the example data sets and code are available on the authors’ website, CRAN, and R-Forge, allowing readers to easily reproduce working examples. Although the examples focus on agricultural and environmental economics, they provide beginners with a good foundation to apply SP methods in other fields. Statisticians, empirical researchers, and advanced students can use the book to conduct applied research of SP methods in economics and market research. The book is also suitable as a primary text or supplemental reading in an introductory-level, hands-on course.

Discrete Choice Methods with Simulation


Discrete Choice Methods with Simulation

Author: Kenneth Train

language: en

Publisher: Cambridge University Press

Release Date: 2009-07-06


DOWNLOAD





This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.