Discrete And Computational Geometry Devadoss


Download Discrete And Computational Geometry Devadoss PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete And Computational Geometry Devadoss book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Discrete and Computational Geometry


Discrete and Computational Geometry

Author: Satyan L. Devadoss

language: en

Publisher: Princeton University Press

Release Date: 2011-04-11


DOWNLOAD





An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)

Discrete and Computational Geometry, 2nd Edition


Discrete and Computational Geometry, 2nd Edition

Author: Satyan L. Devadoss

language: en

Publisher: Princeton University Press

Release Date: 2025-07-08


DOWNLOAD





The essential introduction to discrete and computational geometry—now fully updated and expanded Discrete and Computational Geometry bridges the theoretical world of discrete geometry with the applications-driven realm of computational geometry, offering a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. Beginning with polygons and ending with polyhedra, it explains how to capture the shape of data given by a set of points, from convex hulls and triangulations to Voronoi diagrams, geometric duality, chains, linkages, and alpha complexes. Connections to real-world applications are made throughout, and algorithms are presented independent of any programming language. Now fully updated and expanded, this richly illustrated textbook is an invaluable learning tool for students in mathematics, computer science, engineering, and physics. Now with new sections on duality and on computational topology Project suggestions at the end of every chapter Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and fully updated unsolved problems Uniquely designed for a one-semester class Accessible to college sophomores with minimal background Also suitable for more advanced students Online solutions manual (available to instructors)

Discrete and Computational Geometry, 2nd Edition


Discrete and Computational Geometry, 2nd Edition

Author: Satyan L. Devadoss

language: en

Publisher: Princeton University Press

Release Date: 2025-07-08


DOWNLOAD





The essential introduction to discrete and computational geometry—now fully updated and expanded Discrete and Computational Geometry bridges the theoretical world of discrete geometry with the applications-driven realm of computational geometry, offering a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. Beginning with polygons and ending with polyhedra, it explains how to capture the shape of data given by a set of points, from convex hulls and triangulations to Voronoi diagrams, geometric duality, chains, linkages, and alpha complexes. Connections to real-world applications are made throughout, and algorithms are presented independent of any programming language. Now fully updated and expanded, this richly illustrated textbook is an invaluable learning tool for students in mathematics, computer science, engineering, and physics. Now with new sections on duality and on computational topology Project suggestions at the end of every chapter Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and fully updated unsolved problems Uniquely designed for a one-semester class Accessible to college sophomores with minimal background Also suitable for more advanced students Online solutions manual (available to instructors)