Structural Health Monitoring Using Emerging Signal Processing Approaches With Artificial Intelligence Algorithms


Download Structural Health Monitoring Using Emerging Signal Processing Approaches With Artificial Intelligence Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structural Health Monitoring Using Emerging Signal Processing Approaches With Artificial Intelligence Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Structural Health Monitoring Using Emerging Signal Processing Approaches with Artificial Intelligence Algorithms


Structural Health Monitoring Using Emerging Signal Processing Approaches with Artificial Intelligence Algorithms

Author: Chunwei Zhang

language: en

Publisher: CRC Press

Release Date: 2024-11-06


DOWNLOAD





Structural health monitoring is a powerful tool across civil, mechanical, automotive, and aerospace engineering, allowing the assessment and measurement of physical parameters in real time. Processing changes in the vibration signals of a dynamic system can detect, locate, and quantify any damage existing in the system. This book presents a comprehensive state‐of‐the‐art review of the applications in time, frequency, and time‐frequency domains of signal‐processing techniques for damage perception, localization, and quantification in various structural systems. Experimental investigations are illustrated, including the development of a set of damage indices based on the signal features extracted through various signal‐processing techniques to evaluate sensitivity in damage identification. Chapters summarize the application of the Hilbert–Huang transform based on three decomposition methods such as empirical mode decomposition, ensemble empirical mode decomposition, and complete ensemble empirical mode decomposition with adaptive noise. Also, the chapters assess the performance and sensitivity of different approaches, including multiple signal classification and empirical wavelet transform techniques in damage detection and quantification. Artificial neural networks for automated damage identification are introduced. This book suits students, engineers, and researchers who are investigating structural health monitoring, signal processing, and damage identification of structures.

Innovative Methods and Materials in Structural Health Monitoring of Civil Infrastructures


Innovative Methods and Materials in Structural Health Monitoring of Civil Infrastructures

Author: Raffaele Zinno

language: en

Publisher: MDPI

Release Date: 2021-09-02


DOWNLOAD





In the past, when elements in structures were composed of perishable materials, such as wood, the maintenance of houses, bridges, etc., was considered of vital importance for their safe use and to preserve their efficiency. With the advent of materials such as reinforced concrete and steel, given their relatively long useful life, periodic and constant maintenance has often been considered a secondary concern. When it was realized that even for structures fabricated with these materials that the useful life has an end and that it was being approached, planning maintenance became an important and non-negligible aspect. Thus, the concept of structural health monitoring (SHM) was introduced, designed, and implemented as a multidisciplinary method. Computational mechanics, static and dynamic analysis of structures, electronics, sensors, and, recently, the Internet of Things (IoT) and artificial intelligence (AI) are required, but it is also important to consider new materials, especially those with intrinsic self-diagnosis characteristics, and to use measurement and survey methods typical of modern geomatics, such as satellite surveys and highly sophisticated laser tools.

Structural Health Monitoring


Structural Health Monitoring

Author: Charles R. Farrar

language: en

Publisher: John Wiley & Sons

Release Date: 2012-11-19


DOWNLOAD





Written by global leaders and pioneers in the field, this book is a must-have read for researchers, practicing engineers and university faculty working in SHM. Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions. Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors’ detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies. Considers structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm Emphasises an integrated approach to the development of structural health monitoring solutions by coupling the measurement hardware portion of the problem directly with the data interrogation algorithms Benefits from extensive use of the authors’ detailed surveys of 800 papers in the technical literature and the experience they have gained from teaching numerous short courses on this subject.