Digital And Statistical Signal Processing


Download Digital And Statistical Signal Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Digital And Statistical Signal Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Digital and Statistical Signal Processing


Digital and Statistical Signal Processing

Author: Anastasia Veloni

language: en

Publisher: CRC Press

Release Date: 2018-10-03


DOWNLOAD





Nowadays, many aspects of electrical and electronic engineering are essentially applications of DSP. This is due to the focus on processing information in the form of digital signals, using certain DSP hardware designed to execute software. Fundamental topics in digital signal processing are introduced with theory, analytical tables, and applications with simulation tools. The book provides a collection of solved problems on digital signal processing and statistical signal processing. The solutions are based directly on the math-formulas given in extensive tables throughout the book, so the reader can solve practical problems on signal processing quickly and efficiently. FEATURES Explains how applications of DSP can be implemented in certain programming environments designed for real time systems, ex. biomedical signal analysis and medical image processing. Pairs theory with basic concepts and supporting analytical tables. Includes an extensive collection of solved problems throughout the text. Fosters the ability to solve practical problems on signal processing without focusing on extended theory. Covers the modeling process and addresses broader fundamental issues.

Statistical Digital Signal Processing and Modeling


Statistical Digital Signal Processing and Modeling

Author: Monson H. Hayes

language: en

Publisher: John Wiley & Sons

Release Date: 1996-04-19


DOWNLOAD





This new text responds to the dramatic growth in digital signal processing (DSP) over the past decade, and is the product of many years of teaching an advanced DSP course at Georgia Tech. While the focal point of the text is signal modeling, it integrates and explores the relationships of signal modeling to the important problems of optimal filtering, spectrum estimation, and adaptive filtering. Coverage is equally divided between the theory and philosophy of statistical signal processing, and the algorithms that are used to solve related problems. The text reflects the author's philosophy that a deep understanding of signal processing is accomplished best through working problems. For this reason, the book is loaded with worked examples, homework problems, and MATLAB computer exercises. While the examples serve to illustrate the ideas developed in the book, the problems seek to motivate and challenge the student and the computer exercises allow the student to experiment with signal processing algorithms on complex signals. Professor Hayes is recognized as a leader in the signal processing community, particularly for his work in signal reconstruction and image processing. This text is suitable for senior/graduate level courses in advanced DSP or digital filtering found in Electrical Engineering Departments. Prerequisites include basic courses in DSP and probability theory.

Digital Signal Processing and Statistical Classification


Digital Signal Processing and Statistical Classification

Author: George J. Miao

language: en

Publisher: Artech House

Release Date: 2002


DOWNLOAD





This is the first book to introduce and integrate advanced digital signal processing (DSP) and classification together, and the only volume to introduce state-of-the-art transforms including DFT, FFT, DCT, DHT, PCT, CDT, and ODT together for DSP and communication applications. You get step-by-step guidance in discrete-time domain signal processing and frequency domain signal analysis; digital filter design and adaptive filtering; multirate digital processing; and statistical signal classification. It also helps you overcome problems associated with multirate A/D and D/A converters.