Digital Signal Processing And Statistical Classification

Download Digital Signal Processing And Statistical Classification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Digital Signal Processing And Statistical Classification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Digital Signal Processing and Statistical Classification

This is the first book to introduce and integrate advanced digital signal processing (DSP) and classification together, and the only volume to introduce state-of-the-art transforms including DFT, FFT, DCT, DHT, PCT, CDT, and ODT together for DSP and communication applications. You get step-by-step guidance in discrete-time domain signal processing and frequency domain signal analysis; digital filter design and adaptive filtering; multirate digital processing; and statistical signal classification. It also helps you overcome problems associated with multirate A/D and D/A converters.
Fundamentals of Signal Processing in Generalized Metric Spaces

Exploring the interrelations between generalized metric spaces, lattice-ordered groups, and order statistics, the book contains a new algebraic approach to Signal Processing Theory. It describes mathematical concepts and results important in the development, analysis, and optimization of signal processing algorithms intended for various applications. The book offers a solution of large-scale Signal Processing Theory problems of increasing both signal processing efficiency under prior uncertainty conditions and signal processing rate that is provided by multiplication-free signal processing algorithms based on lattice-ordered group operations. From simple basic relationships to computer simulation, the text covers a wide range of new mathematical techniques essential for understanding the proposed signal processing algorithms developed for solving the following problems: signal parameter and spectral estimation, signal filtering, detection, classification, and resolution; array signal processing; demultiplexing and demodulation in multi-channel communication systems and multi-station networks; wavelet analysis of 1D/ 2D signals. Along with discussing mathematical aspects, each chapter presents examples illustrating operation of signal processing algorithms developed for various applications. The book helps readers understand relations between known classic and obtained results as well as recent research trends in Signal Processing Theory and its applications, providing all necessary mathematical background concerning lattice-ordered groups to prepare readers for independent work in the marked directions including more advanced research and development.
An Introduction to Statistical Signal Processing

Author: Robert M. Gray
language: en
Publisher: Cambridge University Press
Release Date: 2004-12-02
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.