Differential Geometry Of Finsler And Lagrange Spaces

Download Differential Geometry Of Finsler And Lagrange Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Geometry Of Finsler And Lagrange Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Differential Geometry of Finsler and Lagrange Spaces

Author: Gauree Shanker
language: en
Publisher: LAP Lambert Academic Publishing
Release Date: 2012
Finsler geometry is a subject that concerns manifolds with Finsler metrics including Riemannian metrics. It has applications in many fields of natural sciences such as Biology, Econometrics, Physics etc. This invaluable book presents some advanced work done by the author in Finsler and Lagrange Geometry such as the theory of hyper surfaces with a beta change of Finsler metric, Cartan spaces with Generalized (, )-metric admitting h-metrical d-connection.In addition to above topics, four dimensional Finsler space with constant unified main scalars, conformal change of four dimensional Finsler space, a remarkable connection in a Finsler space with generalized (, )-metric, the existence of recurrent d-connections of the generalized Lagrange spaces and the L-duality between Finsler and Cartan spaces have been also discussed in detail. In particular the Finlerian hypersurfaces obtained by Matsumoto change of Finsler metric and the L-dual of Generalized Kropina metric have been discussed. This book will benefit the postgraduate students as well as researchers working in the field of Finsler, Lagrange Geometry and allied areas."
The Geometry of Hamilton and Lagrange Spaces

Author: R. Miron
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-04-11
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.
The Geometry of Lagrange Spaces: Theory and Applications

Author: R. Miron
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Differential-geometric methods are gaining increasing importance in the understanding of a wide range of fundamental natural phenomena. Very often, the starting point for such studies is a variational problem formulated for a convenient Lagrangian. From a formal point of view, a Lagrangian is a smooth real function defined on the total space of the tangent bundle to a manifold satisfying some regularity conditions. The main purpose of this book is to present: (a) an extensive discussion of the geometry of the total space of a vector bundle; (b) a detailed exposition of Lagrange geometry; and (c) a description of the most important applications. New methods are described for construction geometrical models for applications. The various chapters consider topics such as fibre and vector bundles, the Einstein equations, generalized Einstein--Yang--Mills equations, the geometry of the total space of a tangent bundle, Finsler and Lagrange spaces, relativistic geometrical optics, and the geometry of time-dependent Lagrangians. Prerequisites for using the book are a good foundation in general manifold theory and a general background in geometrical models in physics. For mathematical physicists and applied mathematicians interested in the theory and applications of differential-geometric methods.