Differential Forms And Applications


Download Differential Forms And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Forms And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Differential Forms and Applications


Differential Forms and Applications

Author: Manfredo P. Do Carmo

language: en

Publisher: Springer Science & Business Media

Release Date: 1998-05-20


DOWNLOAD





An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Differential Forms and Applications


Differential Forms and Applications

Author: Manfredo P. Do Carmo

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This is a free translation of a set of notes published originally in Portuguese in 1971. They were translated for a course in the College of Differential Geome try, ICTP, Trieste, 1989. In the English translation we omitted a chapter on the Frobenius theorem and an appendix on the nonexistence of a complete hyperbolic plane in euclidean 3-space (Hilbert's theorem). For the present edition, we introduced a chapter on line integrals. In Chapter 1 we introduce the differential forms in Rn. We only assume an elementary knowledge of calculus, and the chapter can be used as a basis for a course on differential forms for "users" of Mathematics. In Chapter 2 we start integrating differential forms of degree one along curves in Rn. This already allows some applications of the ideas of Chapter 1. This material is not used in the rest of the book. In Chapter 3 we present the basic notions of differentiable manifolds. It is useful (but not essential) that the reader be familiar with the notion ofa regular surface in R3. In Chapter 4 we introduce the notion of manifold with boundary and prove Stokes theorem and Poincare's lemma. Starting from this basic material, we could follow any of the possi ble routes for applications: Topology, Differential Geometry, Mechanics, Lie Groups, etc. We have chosen Differential Geometry. For simplicity, we re stricted ourselves to surfaces.

Differential Forms and Connections


Differential Forms and Connections

Author: R. W. R. Darling

language: en

Publisher: Cambridge University Press

Release Date: 1994-09-22


DOWNLOAD





Introducing the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--this textbook covers both classical surface theory, the modern theory of connections, and curvature. With no knowledge of topology assumed, the only prerequisites are multivariate calculus and linear algebra.