Diagnosis Of Neurological Disorders Based On Deep Learning Techniques


Download Diagnosis Of Neurological Disorders Based On Deep Learning Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Diagnosis Of Neurological Disorders Based On Deep Learning Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Diagnosis of Neurological Disorders Based on Deep Learning Techniques


Diagnosis of Neurological Disorders Based on Deep Learning Techniques

Author: Jyotismita Chaki

language: en

Publisher: CRC Press

Release Date: 2023-05-15


DOWNLOAD





This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders. It includes application of feed-forward neural networks, deep generative models, convolutional neural networks, graph convolutional networks, and recurrent neural networks in the field of diagnosis of neurological disorders. Along with this, data preprocessing including scaling, correction, trimming, and normalization is also included. Offers a detailed description of the deep learning approaches used for the diagnosis of neurological disorders. Demonstrates concepts of deep learning algorithms using diagrams, data tables, and examples for the diagnosis of neurodegenerative, neurodevelopmental, and psychiatric disorders. Helps build, train, and deploy different types of deep architectures for diagnosis. Explores data preprocessing techniques involved in diagnosis. Includes real-time case studies and examples. This book is aimed at graduate students and researchers in biomedical imaging and machine learning.

Machine Learning and the Internet of Medical Things in Healthcare


Machine Learning and the Internet of Medical Things in Healthcare

Author: Krishna Kant Singh

language: en

Publisher: Academic Press

Release Date: 2021-04-14


DOWNLOAD





Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. - Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning - Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics - Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies

Artificial Intelligence for Neurological Disorders


Artificial Intelligence for Neurological Disorders

Author: Ajith Abraham

language: en

Publisher: Academic Press

Release Date: 2022-09-23


DOWNLOAD





Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation. The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances. - Discusses various AI and ML methods to apply for neurological research - Explores Deep Learning techniques for brain MRI images - Covers AI techniques for the early detection of neurological diseases and seizure prediction - Examines cognitive therapies using AI and Deep Learning methods