Detection Tracking And Classification Of Vehicles In Urban Environments


Download Detection Tracking And Classification Of Vehicles In Urban Environments PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Detection Tracking And Classification Of Vehicles In Urban Environments book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Detection, Tracking and Classification of Vehicles in Urban Environments


Detection, Tracking and Classification of Vehicles in Urban Environments

Author: Zezhi Chen

language: en

Publisher:

Release Date: 2012


DOWNLOAD





The work presented in this dissertation provides a framework for object detection,tracking and vehicle classification in urban environment. The final aim is to produce a system for traffic flow statistics analysis. Based on level set methods and a multi-phase colour model, a general variational formulation which combines Minkowski-form distance L2 and L3 of each channel and their homogenous regions in the index is defined. The active segmentation method successfully finds whole object boundaries which include different known colours, even in very complex background situations, rather than splitting an object into several regions with different colours. For video data supplied by a nominally stationary camera, an adaptive Gaussian mixture model (GMM), with a multi-dimensional Gaussian kernel spatio-temporal smoothing transform, has been used for modeling the distribution of colour image data. The algorithm improves the segmentation performance in adverse imaging conditions. A self-adaptive Gaussian mixture model, with an online dynamical learning rate and global illumination changing factor, is proposed to address the problem of sudden change in illumination. The effectiveness of a state-of-the-art classification algorithm to categorise road vehicles for an urban traffic monitoring system using a set of measurement-based feature (BMF) and a multi-shape descriptor is investigated. Manual vehicle segmentation was used to acquire a large database of labeled vehicles form a set of MBF in combination with pyramid histogram of orientation gradient (PHOG) and edge-based PHOG features. These are used to classify the objects into four main vehicle categories: car, van (van, minivan, minibus and limousine), bus (single and double decked) and motorcycle (motorcycle and bicycle). Then, an automatic system for vehicle detection, tracking and classification from roadside CCTV is presented. The system counts vehicles and separates them into the four categories mentioned above. The GMM and shadow removal method have been used to deal with sudden illumination changes and camera vibration. A Kalman filter tracks a vehicle to enable classification by majority voting over several consecutive frames, and a level set method has been used to refine the foreground blob. Finally, a framework for confidence based active learning for vehicle classification in an urban traffic environment is presented. Only a small number of low confidence samples need to be identified and annotated according to their confidence. Compared to passive learning, the number of annotated samples needed for the training dataset can be reduced significantly, yielding a high accuracy classifier with low computational complexity and high efficiency.

ICT Applications for Smart Cities


ICT Applications for Smart Cities

Author: Angel D. Sappa

language: en

Publisher: Springer Nature

Release Date: 2022-09-09


DOWNLOAD





This book is the result of four-year work in the framework of the Ibero-American Research Network TICs4CI funded by the CYTED program. In the following decades, 85% of the world's population is expected to live in cities; hence, urban centers should be prepared to provide smart solutions for problems ranging from video surveillance and intelligent mobility to the solid waste recycling processes, just to mention a few. More specifically, the book describes underlying technologies and practical implementations of several successful case studies of ICTs developed in the following smart city areas: • Urban environment monitoring • Intelligent mobility • Waste recycling processes • Video surveillance • Computer-aided diagnose in healthcare systems • Computer vision-based approaches for efficiency in production processes The book is intended for researchers and engineers in the field of ICTs for smart cities, as well as to anyone who wants to know about state-of-the-art approaches and challenges on this field.

Image Analysis and Recognition


Image Analysis and Recognition

Author: Fakhri Karray

language: en

Publisher: Springer

Release Date: 2017-06-19


DOWNLOAD





This book constitutes the thoroughly refereed proceedings of the 14th International Conference on Image Analysis and Recognition, ICIAR 2017, held in Montreal, QC, Canada, in July 2017. The 73 revised full papers presented were carefully reviewed and selected from 133 submissions. The papers are organized in the following topical sections: machine learning in image recognition; machine learning for medical image computing; image enhancement and reconstruction; image segmentation; motion and tracking; 3D computer vision; feature extraction; detection and classification; biomedical image analysis; image analysis in ophthalmology; remote sensing; applications.