Design And Characterization Of Peptide Based Biomaterials


Download Design And Characterization Of Peptide Based Biomaterials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design And Characterization Of Peptide Based Biomaterials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Design and Characterization of Peptide-based Biomaterials


Design and Characterization of Peptide-based Biomaterials

Author: Sivakumar Ramachandran

language: en

Publisher:

Release Date: 2007


DOWNLOAD





The main objective of this dissertation is to lay out the design principles involved in assembling stimuli-sensitive, peptide-based biomaterials that has potential for various biomedical applications like tissue engineering and drug delivery. Supramolecular systems, which enable one to assemble novel materials from molecular level, have fascinated researchers in many disciplines. Inspired by such systems, a set of mutually complementary, self-repulsive oligopeptide modules (with alternating polar-apolar amino acid sequence) were designed to gain better control and wide range of tunability over the assembling process. These peptide modules (at 0.25 wt% in aqueous buffer) assembled into a hydrogel network with change in pH/ionic strength (self-assembly) and upon mixing the two mutually-complementary peptide modules (co-assembly). Mixing induced hydrogels are particularly attractive as they can be easily assembled by simple mixing of peptide solutions prior to application. Another advantage of mixing-induced gelation is that it preserves the pH and ionic strength of the original peptide solutions. Circular dichroism spectroscopy of individual decapeptide solutions revealed their random coil conformation. Transmission electron microscopy images showed the nanofibrillar network structure of the hydrogel. Dynamic rheological characterization revealed its high elasticity and shear-thinning nature. Furthermore, the co-assembled hydrogel was capable of rapid recoveries from repeated shear-induced breakdowns, a property desirable for designing injectable biomaterials. A systematic variation of the neutral amino acids in the sequence revealed some of the design principles for this class of biomaterials. First, viscoelastic properties of the hydrogels can be tuned through adjusting the hydrophobicity of the neutral amino acids. Second, the beta-sheet propensity of the neutral amino acid residue in the peptides is critical for hydrogelation. The compatibility of these hydrogels with entrapped biomolecules (molecular biocompatibility) was confirmed using high-resolution, 1H-15N heteronuclear NMR spectroscopy. Sticky-ends in the peptide fibers did not provide any advantages over blunt-ends in terms of biomaterial property, suggesting that peptides might be aligned perpendicular to the fiber axis. Once the design principles of these peptide-based biomaterials are laid out, the next step would be to incorporate biological functionalities like cell-adhesive motifs and enzyme recognition sequences at strategic positions of these biomaterials for specific tissue engineering or drug delivery applications.

Peptide-based Biomaterials


Peptide-based Biomaterials

Author: Mustafa O. Guler

language: en

Publisher: Royal Society of Chemistry

Release Date: 2020-11-18


DOWNLOAD





Research and new tools in biomaterials development by using peptides are currently growing, as more functional and versatile building blocks are used to design a host of functional biomaterials via chemical modifications for health care applications. It is a field that is attracting researchers from across soft matter science, molecular engineering and biomaterials science. Covering the fundamental concepts of self-assembly, design and synthesis of peptides, this book will provide a solid introduction to the field for those interested in developing functional biomaterials by using peptide derivatives. The bioactive nature of the peptides and their physical properties are discussed in various applications in biomedicine. This book will help researchers and students working in biomaterials and biomedicine fields and help their understanding of modulating biological processes for disease diagnosis and treatments.

Principles of Bioinspired and Biomimetic Regenerative Medicine


Principles of Bioinspired and Biomimetic Regenerative Medicine

Author: Farnaz Ghorbani

language: en

Publisher: Springer Nature

Release Date: 2025-07-22


DOWNLOAD





Nature has developed a diverse of materials, structures, and processes that are highly optimized for various functions. Through the field of biomimicry and bioinspiration, engineers are enhancing their understanding of natural design principles and applying these insights to create complex engineering models across different scales. These innovative approaches are particularly appropriate to address challenges in tissue engineering and regenerative medicine. Natural materials and systems exhibit a diverse array of functions, including but not limited to structural support, signal transduction, charge transfer, self-assembly, self-organization, and self-replication. Consequently, nature’s "solution manual" is remarkably comprehensive. Despite significant advancements, the reconstruction of nature-inspired designs using synthetic materials presents ongoing challenges. As a result, nature and bioinspired materials and architectures have emerged as a paradigm shift within the realm of tissue engineering and regenerative medicine. This comprehensive guide aims to provide scientists with inspiration to address a variety of critical challenges in tissue regeneration by directly applying established design principles. A key focus of this volume is the utilization of bioinspired architectures in tissue engineering. It also emphasizes the development of nature-inspired structures through the integration of novel biological macromolecules, bioinspired polymers and hydrogels, as well as biomimetic ceramics. Furthermore, the text concentrates on the biochemical and biophysical dimensions of bioinspired surface engineering. Both dry-lab and wet-lab methodologies for characterizing nature and bio-inspired materials and structures are also addressed. The publication seeks to promote the development of high-level translational knowledge among both established and emerging scientists.