Dc Technology In Utility Grids

Download Dc Technology In Utility Grids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dc Technology In Utility Grids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
DC Technology in Utility Grids

Author: Sedigheh Rabiee
language: en
Publisher: BoD – Books on Demand
Release Date: 2021-12-17
The assembly of this study started in 2013 during the preparation of the foundation of the Flexible Electrical Networks (FEN) Research Campus, an institution supported by the German Federal Ministry of Education and Science, concentrating on DC technology in power grids as an enabler for the energy transition. It reflects the state-of-the-art and research needs of DC technology against the background of application in public grids up until the year 2015. Topics as components, control, management and automation, high-, medium, and low-voltage grid concepts as well as social dimensions, economics, and impact on living beings are considered. After substantial editorial effort, its first public edition has become ready now. The aim of FEN is to investigate and to develop flexible power grids. Such grid will safeguard the future energy supply with a high share of fluctuating and decentralized renewable energy sources. At the same time, these grids will enable a reliable and affordable energy supply in the future. The objective is to provide new technologies and concepts for the security and quality of the energy supply in the transmission and distribution grids. To pursue this goal, the use of direct-current (DC) technology, based on power electronics, automation and communication technologies, plays an important role. Although DC technology is not yet established as a standard technology in the public electrical power supply system, its high potential has been widely recognized. The use of DC is an enabler to make the future energy supply system more economical than a system based on alternating-current (AC), because of its superior properties in handling distributed and fluctuation power generation. Indeed, DC connections are already the most cost-efficient solution in cases of very high-power long-distance point-to-point transmission of electricity or via submarine cables. The objective of the FEN Research Campus is now to achieve and demonstrate feasibility of DC as a standard solution for future electrical grids, as described in this study.
Fault Analysis and Protection System Design for DC Grids

This book offers a comprehensive reference guide to the important topics of fault analysis and protection system design for DC grids, at various voltage levels and for a range of applications. It bridges a much-needed research gap to enable wide-scale implementation of energy-efficient DC grids. Following an introduction, DC grid architecture is presented, covering the devices, operation and control methods. In turn, analytical methods for DC fault analysis are presented for different types of faults, followed by separate chapters on various DC fault identification methods, using time, frequency and time-frequency domain analyses of the DC current and voltage signals. The unit and non-unit protection strategies are discussed in detail, while a dedicated chapter addresses DC fault isolation devices. Step-by-step guidelines are provided for building hardware-based experimental test setups, as well as methods for validating the various algorithms. The book also features several application-driven case studies.
Multi-terminal Direct-Current Grids

Author: Nilanjan Chaudhuri
language: en
Publisher: John Wiley & Sons
Release Date: 2014-09-09
A generic DC grid model that is compatible with the standard AC system stability model is presented and used to analyse the interaction between the DC grid and the host AC systems. A multi-terminal DC (MTDC) grid interconnecting multiple AC systems and offshore energy sources (e.g. wind farms) across the nations and continents would allow effective sharing of intermittent renewable resources and open market operation for secure and cost-effective supply of electricity. However, such DC grids are unprecedented with no operational experience. Despite lots of discussions and specific visions for setting up such MTDC grids particularly in Europe, none has yet been realized in practice due to two major technical barriers: Lack of proper understanding about the interaction between a MTDC grid and the surrounding AC systems. Commercial unavailability of efficient DC side fault current interruption technology for conventional voltage sourced converter systems This book addresses the first issue in details by presenting a comprehensive modeling, analysis and control design framework. Possible methodologies for autonomous power sharing and exchange of frequency support across a MTDC grid and their impact on overall stability is covered. An overview of the state-of-the-art, challenges and on-going research and development initiatives for DC side fault current interruption is also presented.