Fault Analysis And Protection System Design For Dc Grids

Download Fault Analysis And Protection System Design For Dc Grids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fault Analysis And Protection System Design For Dc Grids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fault Analysis and Protection System Design for DC Grids

This book offers a comprehensive reference guide to the important topics of fault analysis and protection system design for DC grids, at various voltage levels and for a range of applications. It bridges a much-needed research gap to enable wide-scale implementation of energy-efficient DC grids. Following an introduction, DC grid architecture is presented, covering the devices, operation and control methods. In turn, analytical methods for DC fault analysis are presented for different types of faults, followed by separate chapters on various DC fault identification methods, using time, frequency and time-frequency domain analyses of the DC current and voltage signals. The unit and non-unit protection strategies are discussed in detail, while a dedicated chapter addresses DC fault isolation devices. Step-by-step guidelines are provided for building hardware-based experimental test setups, as well as methods for validating the various algorithms. The book also features several application-driven case studies.
Modeling, Operation, and Analysis of DC Grids

Modeling, Operation, and Analysis of DC Grids presents a unified vision of direct current grids with their core analysis techniques, uniting power electronics, power systems, and multiple scales of applications. Part one presents high power applications such as HVDC transmission for wind energy, faults and protections in HVDC lines, stability analysis and inertia emulation. The second part addresses current applications in low voltage such as microgrids, power trains and aircraft applications. All chapters are self-contained with numerical and experimental analysis. - Provides a unified, coherent presentation of DC grid analysis based on modern research in power systems, power electronics, microgrids and MT-HVDC transmission - Covers multiple scales of applications in one location, addressing DC grids in electric vehicles, microgrids, DC distribution, multi-terminal HVDC transmission and supergrids - Supported by a unified set of MATLAB and Simulink test systems designed for application scenarios
High Voltage Direct Current Transmission

This comprehensive reference guides the reader through all HVDC technologies, including LCC (Line Commutated Converter), 2-level VSC and VSC HVDC based on modular multilevel converters (MMC) for an in-depth understanding of converters, system level design, operating principles and modeling. Written in a tutorial style, the book also describes the key principles of design, control, protection and operation of DC transmission grids, which will be substantially different from the practice with AC transmission grids. The first dedicated reference to the latest HVDC technologies and DC grid developments; this is an essential resource for graduate students and researchers as well as engineers and professionals working on the design, modeling and operation of DC grids and HVDC. Key features: Provides comprehensive coverage of LCC, VSC and (half and full bridge) MMC-based VSC technologies and DC transmission grids. Presents phasor and dynamic analytical models for each HVDC technology and DC grids. Includes HVDC protection, studies of DC and AC faults, as well as system-level studies of AC-DC interactions and impact on AC grids for each HVDC technology. Companion website hosts SIMULINK SimPowerSystems models with examples for all HVDC topologies.