Data Warehouse Requirements Engineering


Download Data Warehouse Requirements Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Warehouse Requirements Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Warehouse Requirements Engineering


Data Warehouse Requirements Engineering

Author: Naveen Prakash

language: en

Publisher: Springer

Release Date: 2018-01-29


DOWNLOAD





As the first to focus on the issue of Data Warehouse Requirements Engineering, this book introduces a model-driven requirements process used to identify requirements granules and incrementally develop data warehouse fragments. In addition, it presents an approach to the pair-wise integration of requirements granules for consolidating multiple data warehouse fragments. The process is systematic and does away with the fuzziness associated with existing techniques. Thus, consolidation is treated as a requirements engineering issue. The notion of a decision occupies a central position in the decision-based approach. On one hand, information relevant to a decision must be elicited from stakeholders; modeled; and transformed into multi-dimensional form. On the other, decisions themselves are to be obtained from decision applications. For the former, the authors introduce a suite of information elicitation techniques specific to data warehousing. This information is subsequently converted into multi-dimensional form. For the latter, not only are decisions obtained from decision applications for managing operational businesses, but also from applications for formulating business policies and for defining rules for enforcing policies, respectively. In this context, the book presents a broad range of models, tools and techniques. For readers from academia, the book identifies the scientific/technological problems it addresses and provides cogent arguments for the proposed solutions; for readers from industry, it presents an approach for ensuring that the product meets its requirements while ensuring low lead times in delivery.

Fundamentals of Data Warehouses


Fundamentals of Data Warehouses

Author: Matthias Jarke

language: en

Publisher: Springer Science & Business Media

Release Date: 2002-11-26


DOWNLOAD





This book presents the first comparative review of the state of the art and the best current practices of data warehouses. It covers source and data integration, multidimensional aggregation, query optimization, metadata management, quality assessment, and design optimization. A conceptual framework is presented by which the architecture and quality of a data warehouse can be assessed and improved using enriched metadata management combined with advanced techniques from databases, business modeling, and artificial intelligence.

Building a Data Warehouse


Building a Data Warehouse

Author: Vincent Rainardi

language: en

Publisher: Apress

Release Date: 2007-12-27


DOWNLOAD





Building a Data Warehouse: With Examples in SQL Server describes how to build a data warehouse completely from scratch and shows practical examples on how to do it. Author Vincent Rainardi also describes some practical issues he has experienced that developers are likely to encounter in their first data warehousing project, along with solutions and advice. The relational database management system (RDBMS) used in the examples is SQL Server; the version will not be an issue as long as the user has SQL Server 2005 or later. The book is organized as follows. In the beginning of this book (chapters 1 through 6), you learn how to build a data warehouse, for example, defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Then in chapters 7 through 10, you learn how to populate the data warehouse, for example, extracting from source systems, loading the data stores, maintaining data quality, and utilizing the metadata. After you populate the data warehouse, in chapters 11 through 15, you explore how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. Chapters 16 and 17 wrap up the book: After you have built your data warehouse, before it can be released to production, you need to test it thoroughly. After your application is in production, you need to understand how to administer data warehouse operation. What you’ll learn A detailed understanding of what it takes to build a data warehouse The implementation code in SQL Server to build the data warehouse Dimensional modeling, data extraction methods, data warehouse loading, populating dimension and fact tables, data quality, data warehouse architecture, and database design Practical data warehousing applications such as business intelligence reports, analytics applications, and customer relationship management Who this book is for There are three audiences for the book. The first are the people who implement the data warehouse. This could be considered a field guide for them. The second is database users/admins who want to get a good understanding of what it would take to build a data warehouse. Finally, the third audience is managers who must make decisions about aspects of the data warehousing task before them and use the book to learn about these issues.