Data Science Quick Reference Manual Exploratory Data Analysis Metrics Models


Download Data Science Quick Reference Manual Exploratory Data Analysis Metrics Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Quick Reference Manual Exploratory Data Analysis Metrics Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Science Quick Reference Manual Exploratory Data Analysis, Metrics, Models


Data Science Quick Reference Manual Exploratory Data Analysis, Metrics, Models

Author: Mario A. B. Capurso

language: en

Publisher: Mario Capurso

Release Date:


DOWNLOAD





This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Third of a series of books, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. Since this text uses Orange for the application aspects, it describes its installation and widgets. Then it considers the concept of model, its life cycle and the relationship with measures and metrics. The measures of localization, dispersion, asymmetry, correlation, similarity, distance are then described. The test and score metrics used in machine learning, those relating to texts and documents, the association metrics between items in a shopping cart, the relationship between objects, similarity between sets and between graphs, similarity between time series are considered. As a preliminary activity to the modeling phase, the Exploration Data Analysis is deepened in terms of questions, process, techniques and types of problems. For each type of problem, the recommended graphs, the methods of interpreting the results and their implementation in Orange are considered. The text is accompanied by supporting material and you can download the samples in Orange and the test data.

Data Science Quick Reference Manual – Deep Learning


Data Science Quick Reference Manual – Deep Learning

Author: Mario A. B. Capurso

language: en

Publisher: Mario Capurso

Release Date:


DOWNLOAD





This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Part in a series of texts, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. As this text uses Orange for the application aspects, it describes its installation and widgets. The data modeling phase is considered from the perspective of machine learning by summarizing machine learning types, model types, problem types, and algorithm types. Deep Learning techniques are described considering the architectures of the Perceptron, Neocognitron, the neuron with Backpropagation and the activation functions, the Feed Forward Networks, the Autoencoders, the recurrent networks and the LSTM and GRU, the Transformer Neural Networks, the Convolutional Neural Networks and Generative Adversarial Networks and analyzed the building blocks. Regularization techniques (Dropout, Early stopping and others), visual design and simulation techniques and tools, the most used algorithms and the best known architectures (LeNet, VGGnet, ResNet, Inception and others) are considered, closing with a set of practical tips and tricks. The exercises are described with Orange and Python using the Keras/Tensorflow library. The text is accompanied by supporting material and it is possible to download the examples and the test data.

Data Science Quick Reference Manual - Advanced Machine Learning and Deployment


Data Science Quick Reference Manual - Advanced Machine Learning and Deployment

Author: Mario A. B. Capurso

language: en

Publisher: Mario Capurso

Release Date:


DOWNLOAD





This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Part in a series of texts, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. As this text uses Orange for the application aspects, it describes its installation and widgets. The data modeling phase is considered from the perspective of machine learning by summarizing machine learning types, model types, problem types, and algorithm types. Advanced aspects associated with modeling are described such as loss and optimization functions such as gradient descent, techniques to analyze model performance such as Bootstrapping and Cross Validation. Deployment scenarios and the most common platforms are analyzed, with application examples. Mechanisms are proposed to automate machine learning and to support the interpretability of models and results such as Partial Dependence Plot, Permuted Feature Importance and others. The exercises are described with Orange and Python using the Keras/Tensorflow library. The text is accompanied by supporting material and it is possible to download the examples and the test data.