Data Driven Statistical Methods

Download Data Driven Statistical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Driven Statistical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Driven Statistical Methods

Calculations once prohibitively time-consuming can be completed in microseconds by modern computers. This has resulted in dramatic shifts in emphasis in applied statistics. Not only has it freed us from an obsession with the 5% and 1% significance levels imposed by conventional tables but many exact estimation procedures based on randomization tests are now as easy to carry out as approximations based on normal distribution theory. In a wider context it has facilitated the everyday use of tools such as the bootstrap and robust estimation methods as well as diagnostic tests for pinpointing or for adjusting possible aberrations or contamination that may otherwise be virtually undetectable in complex data sets. Data Driven Statistical Methods provides an insight into modern developments in statistical methodology using examples that highlight connections between these techniques as well as their relationship to other established approaches. Illustration by simple numerical examples takes priority over abstract theory. Examples and exercises are selected from many fields ranging from studies of literary style to analysis of survival data from clinical files, from psychological tests to interpretation of evidence in legal cases. Users are encouraged to apply the methods to their own or other data sets relevant to their fields of interest. The book will appeal both to lecturers giving undergraduate mainstream or service courses in statistics and to newly-practising statisticians or others concerned with data interpretation in any discipline who want to make the best use of modern statistical computer software.
Statistical Methods in Online A/B Testing

"Statistical Methods in Online A/B Testing" is a comprehensive guide to statistics in online controlled experiments, a.k.a. A/B tests, that tackles the difficult matter of statistical inference in a way accessible to readers with little to no prior experience with it. Each concept is built from the ground up, explained thoroughly, and illustrated with practical examples from website testing. The presentation is straight to the point and practically oriented so you can apply the takeaways in your daily work.It is a must-read for anyone looking for a deep understanding of how to make data-driven business decisions through experimentation: conversion rate optimizers, product managers, growth experts, data analysts, marketing managers, experts in user experience and design. The new research presented and the fresh perspective on how to apply statistics and experimentation to achieve business goals make for an interesting read even for experienced statisticians.The book deals with scientific methods, but their introductions and explanations are grounded in the business goals they help achieve, such as innovating under controlled risk, and estimating the effect of proposed business actions before committing to them. While the book doesn't shy away from math and formulas, it is to the extent to which these are essential for understanding and applying the underlying concepts. The presentation is friendly to readers with little to no prior knowledge in statistics. Artificial and impractical examples like dice rolling and betting are absent, instead statistical concepts are illustrated through scenarios which might well be mistaken with the last couple of A/B tests you managed.This book also doesn't shy away from the fact that much of the current statistical theory and practice in online A/B testing is misguided, misinterpreted, or misapplied. It also addresses the issue of blind copying of scientific applications without due consideration of the unique features of online business, which is widespread. The book will help you avoid these malpractices by explicitly pointing out frequent mistakes, while also helping you align your usage of statistics and experimentation with any business goals you might want to pursue.
Data-Driven Modeling & Scientific Computation

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.