Machine Learning For Data Science Handbook

Download Machine Learning For Data Science Handbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Data Science Handbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning for Data Science Handbook

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.
Python Data Science Handbook

Author: Jake VanderPlas
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2016-11-21
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Content-Addressable Memories

Designers and users of computer systems have long been aware of the fact that inclusion of some kind of content-addressable or "associative" functions in the storage and retrieval mechanisms would allow a more effective and straightforward organization of data than with the usual addressed memories, with the result that the computing power would be significantly increased. However, although the basic principles of content-addressing have been known for over twenty years, the hardware content-addressable memories (CAMs) have found their way only to special roles such as small buffer memories and con trol units. This situation now seems to be changing: Because of the develop ment of new technologies such as very-large-scale integration of semiconduc tor circuits, charge-coupled devices, magnetic-bubble memories, and certain devices based on quantum-mechanical effects, an increasing amount of active searching functions can be transferred to memory units. The prices of the more complex memory components which earlier were too high to allow the application of these principles to mass memories will be reduced to a fraction of the to tal system costs, and this will certainly have a significant impact on the new computer architectures. In order to advance the new memory principles and technologies, more in formation ought to be made accessible to a common user.