Data Analytics And Digital Transformation

Download Data Analytics And Digital Transformation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analytics And Digital Transformation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Analytics and Digital Transformation

Understanding the significance of data analytics is paramount for digital transformation but in many organizations they are separate units without fully aligned goals. As organizations are applying digital transformations to be adaptive and agile in a competitive environment, data analytics can play a critical role in their success. This book explores the crossroads between them and how to leverage their connection for improved business outcomes. The need to collaborate and share data is becoming an integral part of digital transformation. This not only creates new opportunities but also requires well-considered and continuously assessed decision-making as competitiveness is at stake. This book details approaches, concepts, and frameworks, as well as actionable insights and good practices, including combined data management and agile concepts. Critical issues are discussed such as data quality and data governance, as well as compliance, privacy, and ethics. It also offers insights into how both private and public organizations can innovate and keep up with growing data volumes and increasing technological developments in the short, mid, and long term. This book will be of direct appeal to global researchers and students across a range of business disciplines, including technology and innovation management, organizational studies, and strategic management. It is also relevant for policy makers, regulators, and executives of private and public organizations looking to implement successful transformation policies.
Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics

Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.
Data Analytics and AI

Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.