Customer Segmentation Clustering And Prediction With Python

Download Customer Segmentation Clustering And Prediction With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Customer Segmentation Clustering And Prediction With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON

In this book, we conducted a customer segmentation, clustering, and prediction analysis using Python. We began by exploring the customer dataset, examining its structure and contents. The dataset contained various features such as demographic, behavioral, and transactional attributes. To ensure accurate analysis and modeling, we performed data preprocessing steps. This involved handling missing values, removing duplicates, and addressing any data quality issues that could impact the results. We also split the dataset into features (X) and the target variable (y) for prediction tasks. Since the dataset had features with different scales and units, we applied feature scaling techniques. This process standardized or normalized the data, ensuring that all features contributed equally to the analysis. We then performed regression analysis on the "PURCHASESTRX" feature, which represents the number of purchase transactions made by customers. To begin the regression analysis, we first prepared the dataset by handling missing values, removing duplicates, and addressing any data quality issues. We then split the dataset into features (X) and the target variable (y), with "PURCHASESTRX" being the target variable for regression. We selected appropriate regression algorithms for modeling, such as Linear Regression, Random Forest, Naïve Bayes, KNN, Decision Trees, Support Vector, Ada Boost, Catboost, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron regressors. After training and evaluation, we analyzed the performance of the regression models. We examined the metrics to determine how accurately the models predicted the number of purchase transactions made by customers. A lower MAE and RMSE indicated better predictive performance, while a higher R2 score indicated a higher proportion of variance explained by the model. Based on the analysis, we provided insights and recommendations. These could include identifying factors that significantly influence the number of purchase transactions, understanding customer behavior patterns, or suggesting strategies to increase customer engagement and transaction frequency. Next, we focused on customer segmentation using unsupervised machine learning techniques. K-means clustering algorithm was employed to group customers into distinct segments. The optimal number of clusters was determined using KElbowVisualizer. To gain insights into the clusters, we visualized them 3D space. Dimensionality PCA reduction technique wasused to plot the clusters on scatter plots or 3D plots, enabling us to understand their separations and distributions. We then interpreted the segments by analyzing their characteristics. This involved identifying the unique features that differentiated one segment from another. We also pinpointed the key attributes or behaviors that contributed most to the formation of each segment. In addition to segmentation, we performed clusters prediction tasks using supervised machine learning techniques. Algorithms such as Logistic Regression, Random Forest, Naïve Bayes, KNN, Decision Trees, Support Vector, Ada Boost, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron Classifiers were chosen based on the specific problem. The models were trained on the training dataset and evaluated using the test dataset. To evaluate the performance of the prediction models, various metrics such as accuracy, precision, recall, F1-score, and ROC-AUC were utilized for classification tasks. Summarizing the findings and insights obtained from the analysis, we provided recommendations and actionable insights. These insights could be used for marketing strategies, product improvement, or customer retention initiatives.
REGRESSION, SEGMENTATION, CLUSTERING, AND PREDICTION PROJECTS WITH PYTHON

PROJECT 1: TIME-SERIES WEATHER: FORECASTING AND PREDICTION WITH PYTHON Weather data are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, humidity, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project contains weather data for New Delhi, India. This data was taken out from wunderground. It contains various features such as temperature, pressure, humidity, rain, precipitation, etc. The main target is to develop a prediction model accurate enough for forecasting temperature and predicting target variable (condition). Time-series weather forecasting will be done using ARIMA models. The machine learning models used in this project to predict target variable (condition) are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOUSE PRICE: ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON The dataset used in this project is taken from the second chapter of Aurélien Géron's recent book 'Hands-On Machine learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable list of variables and sits at an optimal size between being to toyish and too cumbersome. The data contains information from the 1990 California census. Although it may not help you with predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible introductory dataset for teaching people about the basics of machine learning. The data pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data. Be warned the data aren't cleaned so there are some preprocessing steps required! The columns are as follows: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, and ocean_proximity. The machine learning models used in this project used to perform regression on median_house_value and to predict it as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CUSTOMER PERSONALITY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Customer Personality Analysis is a detailed analysis of a company’s ideal customers. It helps a business to better understand its customers and makes it easier for them to modify products according to the specific needs, behaviors and concerns of different types of customers. Customer personality analysis helps a business to modify its product based on its target customers from different types of customer segments. For example, instead of spending money to market a new product to every customer in the company’s database, a company can analyze which customer segment is most likely to buy the product and then market the product only on that particular segment. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; and Complain = 1 if customer complained in the last 2 years, 0 otherwise. The target in this project is to perform clustering and predicting to summarize customer segments. In this project, you will perform clustering using KMeans to get 4 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON In this project, you will develop a customer segmentation, clustering, and prediction to define marketing strategy. The sample dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables. Following is the Data Dictionary for Credit Card dataset: CUSTID: Identification of Credit Card holder (Categorical); BALANCE: Balance amount left in their account to make purchases; BALANCEFREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated); PURCHASES: Amount of purchases made from account; ONEOFFPURCHASES: Maximum purchase amount done in one-go; INSTALLMENTSPURCHASES: Amount of purchase done in installment; CASHADVANCE: Cash in advance given by the user; PURCHASESFREQUENCY: How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased); ONEOFFPURCHASESFREQUENCY: How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased); PURCHASESINSTALLMENTSFREQUENCY: How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done); CASHADVANCEFREQUENCY: How frequently the cash in advance being paid; CASHADVANCETRX: Number of Transactions made with "Cash in Advanced"; PURCHASESTRX: Number of purchase transactions made; CREDITLIMIT: Limit of Credit Card for user; PAYMENTS: Amount of Payment done by user; MINIMUM_PAYMENTS: Minimum amount of payments made by user; PRCFULLPAYMENT: Percent of full payment paid by user; and TENURE: Tenure of credit card service for user. In this project, you will perform clustering using KMeans to get 5 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI

In this project, we embarked on a comprehensive journey of exploring the dataset and conducting analysis and predictions in the context of online retail. We began by examining the dataset and performing RFM (Recency, Frequency, Monetary Value) analysis, which allowed us to gain valuable insights into customer purchase behavior. Using the RFM analysis results, we applied K-means clustering, a popular unsupervised machine learning algorithm, to group customers into distinct clusters based on their RFM values. This clustering approach helped us identify different customer segments within the online retail dataset. After successfully clustering the customers, we proceeded to predict the clusters for new customer data. To achieve this, we trained various machine learning models, including logistic regression, support vector machines (SVM), K-nearest neighbors (KNN), decision trees, random forests, gradient boosting, naive Bayes, extreme gradient boosting, light gradient boosting, and multi-layer perceptron. These models were trained on the RFM features and the corresponding customer clusters. To evaluate the performance of the trained models, we employed a range of metrics such as accuracy, recall, precision, and F1 score. Additionally, we generated classification reports to gain a comprehensive understanding of the models' predictive capabilities. In order to provide a user-friendly and interactive experience, we developed a graphical user interface (GUI) using PyQt. The GUI allowed users to input customer information and obtain real-time predictions of the customer clusters using the trained machine learning models. This made it convenient for users to explore and analyze the clustering results. The GUI incorporated visualizations such as decision boundaries, which provided a clear representation of how the clusters were separated based on the RFM features. These visualizations enhanced the interpretation of the clustering results and facilitated better decision-making. To ensure the availability of the trained models for future use, we implemented model persistence by saving the trained models using the joblib library. This allowed us to load the models directly from the saved files without the need for retraining, thus saving time and resources. In addition to the real-time predictions, the GUI showcased performance evaluation metrics such as accuracy, recall, precision, and F1 score. This provided users with a comprehensive assessment of the model's performance and helped them gauge the reliability of the predictions. To delve deeper into the behavior and characteristics of the models, we conducted learning curve analysis, scalability analysis, and performance curve analysis. These analyses shed light on the models' learning capabilities, their performance with varying data sizes, and their overall effectiveness in making accurate predictions. The entire process from dataset exploration to RFM analysis, clustering, model training, GUI development, and real-time predictions was carried out seamlessly, leveraging the power of Python and its machine learning libraries. This approach allowed us to gain valuable insights into customer segmentation and predictive modeling in the online retail domain. By combining data analysis, clustering, machine learning, and GUI development, we were able to provide a comprehensive solution for online retail businesses seeking to understand their customers better and make data-driven decisions. The developed system offered an intuitive interface and accurate predictions, paving the way for enhanced customer segmentation and targeted marketing strategies. Overall, this project demonstrated the effectiveness of integrating machine learning techniques with graphical user interfaces to provide a user-friendly and interactive platform for analyzing and predicting customer clusters in the online retail industry.