Cooperative And Noncooperative Multi Level Programming

Download Cooperative And Noncooperative Multi Level Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cooperative And Noncooperative Multi Level Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Cooperative and Noncooperative Multi-Level Programming

Author: Masatoshi Sakawa
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-06-18
To derive rational and convincible solutions to practical decision making problems in complex and hierarchical human organizations, the decision making problems are formulated as relevant mathematical programming problems which are solved by developing optimization techniques so as to exploit characteristics or structural features of the formulated problems. In particular, for resolving con?ict in decision making in hierarchical managerial or public organizations, the multi level formula tion of the mathematical programming problems has been often employed together with the solution concept of Stackelberg equilibrium. However,weconceivethatapairoftheconventionalformulationandthesolution concept is not always suf?cient to cope with a large variety of decision making situations in actual hierarchical organizations. The following issues should be taken into consideration in expression and formulation of decision making problems. Informulationofmathematicalprogrammingproblems,itistacitlysupposedthat decisions are made by a single person while game theory deals with economic be havior of multiple decision makers with fully rational judgment. Because two level mathematical programming problems are interpreted as static Stackelberg games, multi level mathematical programming is relevant to noncooperative game theory; in conventional multi level mathematical programming models employing the so lution concept of Stackelberg equilibrium, it is assumed that there is no communi cation among decision makers, or they do not make any binding agreement even if there exists such communication. However, for decision making problems in such as decentralized large ?rms with divisional independence, it is quite natural to sup pose that there exists communication and some cooperative relationship among the decision makers.
Cooperative and Noncooperative Multi-Level Programming

To derive rational and convincible solutions to practical decision making problems in complex and hierarchical human organizations, the decision making problems are formulated as relevant mathematical programming problems which are solved by developing optimization techniques so as to exploit characteristics or structural features of the formulated problems. In particular, for resolving con?ict in decision making in hierarchical managerial or public organizations, the multi level formula tion of the mathematical programming problems has been often employed together with the solution concept of Stackelberg equilibrium. However,weconceivethatapairoftheconventionalformulationandthesolution concept is not always suf?cient to cope with a large variety of decision making situations in actual hierarchical organizations. The following issues should be taken into consideration in expression and formulation of decision making problems. Informulationofmathematicalprogrammingproblems,itistacitlysupposedthat decisions are made by a single person while game theory deals with economic be havior of multiple decision makers with fully rational judgment. Because two level mathematical programming problems are interpreted as static Stackelberg games, multi level mathematical programming is relevant to noncooperative game theory; in conventional multi level mathematical programming models employing the so lution concept of Stackelberg equilibrium, it is assumed that there is no communi cation among decision makers, or they do not make any binding agreement even if there exists such communication. However, for decision making problems in such as decentralized large ?rms with divisional independence, it is quite natural to sup pose that there exists communication and some cooperative relationship among the decision makers.
Fuzzy Stochastic Multiobjective Programming

Author: Masatoshi Sakawa
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-02-03
Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.