Control Of Nonholonomic Systems From Sub Riemannian Geometry To Motion Planning

Download Control Of Nonholonomic Systems From Sub Riemannian Geometry To Motion Planning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Control Of Nonholonomic Systems From Sub Riemannian Geometry To Motion Planning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning

Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.
Topological Obstructions to Stability and Stabilization

This open access book provides a unified overview of topological obstructions to the stability and stabilization of dynamical systems defined on manifolds and an overview that is self-contained and accessible to the control-oriented graduate student. The authors review the interplay between the topology of an attractor, its domain of attraction, and the underlying manifold that is supposed to contain these sets. They present some proofs of known results in order to highlight assumptions and to develop extensions, and they provide new results showcasing the most effective methods to cope with these obstructions to stability and stabilization. Moreover, the book shows how Borsuk’s retraction theory and the index-theoretic methodology of Krasnosel’skii and Zabreiko underlie a large fraction of currently known results. This point of view reveals important open problems, and for that reason, this book is of interest to any researcher in control, dynamical systems, topology, or related fields.
Geometric and Numerical Optimal Control

This book introduces readers to techniques of geometric optimal control as well as the exposure and applicability of adapted numerical schemes. It is based on two real-world applications, which have been the subject of two current academic research programs and motivated by industrial use – the design of micro-swimmers and the contrast problem in medical resonance imaging. The recently developed numerical software has been applied to the cases studies presented here. The book is intended for use at the graduate and Ph.D. level to introduce students from applied mathematics and control engineering to geometric and computational techniques in optimal control.