Control Design For Haptic Systems


Download Control Design For Haptic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Control Design For Haptic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Control Design for Haptic Systems


Control Design for Haptic Systems

Author: Suyong Kim

language: en

Publisher: Springer Nature

Release Date: 2024-01-31


DOWNLOAD





This book aims at the upper-class undergraduate and the graduate students, and practicing engineers in the disciplines of mechanical, electrical, and computer engineering, with background knowledge of control. This book, first, explains the components of the haptic systems that are gaining popularity in the virtual reality simulations, the metaverse applications, as well as the remotely operated robotic systems. Next, the book introduces the previous and current widely-adopted methods for modeling and control of the haptic systems. The important metrics of performance such as stability and transparency of the haptic systems are explained and analyzed. Shortcomings of the current methods are discussed using these metrics. The book, then, explains the theories on the input-to-state stability (ISS), and shows how to formulate the control of haptic systems into the ISS framework. Step by step process of control design using the formulation is detailed, and better results are shown with experiment examples. The book develops further the presented approach to secure improved performance under selected issues. For example, better transparency of the haptic rendering, and handling of constant or time-varying time delay present in the haptic control systems.

Engineering Haptic Devices


Engineering Haptic Devices

Author: Christian Hatzfeld

language: en

Publisher: Springer

Release Date: 2014-09-15


DOWNLOAD





In this greatly reworked second edition of Engineering Haptic Devices the psychophysic content has been thoroughly revised and updated. Chapters on haptic interaction, system structures and design methodology were rewritten from scratch to include further basic principles and recent findings. New chapters on the evaluation of haptic systems and the design of three exemplary haptic systems from science and industry have been added. This book was written for students and engineers that are faced with the development of a task-specific haptic system. It is a reference book for the basics of haptic interaction and existing haptic systems and methods as well as an excellent source of information for technical questions arising in the design process of systems and components. Divided into two parts, part 1 contains typical application areas of haptic systems and a thorough analysis of haptics as an interaction modality. The role of the user in the design of haptic systems is discussed and relevant design and development stages are outlined. Part II presents all relevant problems in the design of haptic systems including general system and control structures, kinematic structures, actuator principles and sensors for force and kinematic measures. Further chapters examine interfaces and software development for virtual reality simulations.

Haptics for Virtual Reality and Teleoperation


Haptics for Virtual Reality and Teleoperation

Author: Matjaž Mihelj

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-14


DOWNLOAD





This book covers all topics relevant for the design of haptic interfaces and teleoperation systems. The book provides the basic knowledge required for understanding more complex approaches and more importantly it introduces all issues that must be considered for designing efficient and safe haptic interfaces. Topics covered in this book provide insight into all relevant components of a haptic system. The reader is guided from understanding the virtual reality concept to the final goal of being able to design haptic interfaces for specific tasks such as nanomanipulation. The introduction chapter positions the haptic interfaces within the virtual reality context. In order to design haptic interfaces that will comply with human capabilities at least basic understanding of human sensors-motor system is required. An overview of this topic is provided in the chapter related to human haptics. The book does not try to introduce the state-of-the-art haptic interface solutions because these tend to change quickly. Only a careful selection of different kinematic configurations is shown to introduce the reader into this field. Mathematical models of virtual environment, collision detection and force rendering topics are strongly interrelated and are described in the next two chapters. The interaction with the virtual environment is simulated with a haptic interface. Impedance and admittance based approaches to haptic robot control are presented. Stability issues of haptic interaction are analyzed in details and solutions are proposed for guaranteeing stable and safe operation. Finally, haptic interaction is extended to teleoperation systems. Virtual fixtures which improve the teleoperation and human-robot cooperation in complex environments are covered next and the last chapter presents nanomanipulation as one specific example of teleoperation.