Constant Mean Curvature Surfaces With Boundary


Download Constant Mean Curvature Surfaces With Boundary PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Constant Mean Curvature Surfaces With Boundary book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Constant Mean Curvature Surfaces with Boundary


Constant Mean Curvature Surfaces with Boundary

Author: Rafael López

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-08-31


DOWNLOAD





The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of “compact surfaces with boundaries,” narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.

Surfaces with Constant Mean Curvature


Surfaces with Constant Mean Curvature

Author: Katsuei Kenmotsu

language: en

Publisher: American Mathematical Soc.

Release Date: 2003


DOWNLOAD





The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objec

Constant Mean Curvature Surfaces in Homogeneous Manifolds


Constant Mean Curvature Surfaces in Homogeneous Manifolds

Author: Julia Plehnert

language: en

Publisher: Logos Verlag Berlin GmbH

Release Date: 2012


DOWNLOAD





In this dissertation new constant mean curvature surfaces in homogeneous 3-manifolds are constructed. They arise as sister surfaces of Plateau solutions. The first example, a two-parameter family of MC H surfaces in ∑(k) x R with H ∈ [0,1/2] and k + 4H2 ≤ 0, has genus 0,2 k ends and k-fold dihedral symmetry, k ≥ 2. The existence of the minimal sister follows from the construction of a mean convex domain. The projection of the domain is non-convex. The second example is an MC 1/2 surface in H2 ∈ R with k ends, genus 1 and k-fold dihedral symmetry, k ≥ 3. One has to solve two period problems in the construction. The first period guarantees that the surface has exactly one horizontal symmetry. For the second period the control of a horizontal mirror curve proves the dihedral symmetry. For H=1/2 all surfaces are Alexandrov-embedded.