Composition Operators On Spaces Of Analytic Functions

Download Composition Operators On Spaces Of Analytic Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Composition Operators On Spaces Of Analytic Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Composition Operators on Spaces of Analytic Functions

The study of composition operators lies at the interface of analytic function theory and operator theory. Composition Operators on Spaces of Analytic Functions synthesizes the achievements of the past 25 years and brings into focus the broad outlines of the developing theory. It provides a comprehensive introduction to the linear operators of composition with a fixed function acting on a space of analytic functions. This new book both highlights the unifying ideas behind the major theorems and contrasts the differences between results for related spaces. Nine chapters introduce the main analytic techniques needed, Carleson measure and other integral estimates, linear fractional models, and kernel function techniques, and demonstrate their application to problems of boundedness, compactness, spectra, normality, and so on, of composition operators. Intended as a graduate-level textbook, the prerequisites are minimal. Numerous exercises illustrate and extend the theory. For students and non-students alike, the exercises are an integral part of the book. By including the theory for both one and several variables, historical notes, and a comprehensive bibliography, the book leaves the reader well grounded for future research on composition operators and related areas in operator or function theory.
Composition Operators and Classical Function Theory

The study of composition operators forges links between fundamental properties of linear operators and beautiful results from the classical theory of analytic functions. This book provides a self-contained introduction to both the subject and its function-theoretic underpinnings. The development is geometrically motivated, and accessible to anyone who has studied basic graduate-level real and complex analysis. The work explores how operator-theoretic issues such as boundedness, compactness, and cyclicity evolve - in the setting of composition operators on the Hilbert space H2 into questions about subordination, value distribution, angular derivatives, iteration, and functional equations. Each of these classical topics is developed fully, and particular attention is paid to their common geometric heritage as descendants of the Schwarz Lemma.
Banach Spaces of Analytic Functions

Author: Thomas H. MacGregor
language: en
Publisher: American Mathematical Soc.
Release Date: 2008
This volume is focused on Banach spaces of functions analytic in the open unit disc, such as the classical Hardy and Bergman spaces, and weighted versions of these spaces. Other spaces under consideration here include the Bloch space, the families of Cauchy transforms and fractional Cauchy transforms, BMO, VMO, and the Fock space. Some of the work deals with questions about functions in several complex variables.