Combinatorial Methods With Computer Applications

Download Combinatorial Methods With Computer Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Combinatorial Methods With Computer Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Combinatorial Methods with Computer Applications

This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
A Combinatorial Approach to Matrix Theory and Its Applications

Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. Placing combinatorial and graph-theoretical tools at the forefront of the development of matrix theory, this book uses graphs to explain basic matrix construction, formulas, computations, ideas, and results. It presents material rarely found in other books at this level, including Gersgorin's theorem and its extensions, the Kronecker product of matrices, sign-nonsingular matrices, and the evaluation of the permanent matrix. The authors provide a combinatorial argument for the classical Cayley-Hamilton theorem and a combinatorial proof of the Jordan canonical form of a matrix. They also describe several applications of matrices in electrical engineering, physics, and chemistry.
Notes on Introductory Combinatorics

Author: George Polya
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-27
In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.