A Combinatorial Approach To Matrix Theory And Its Applications

Download A Combinatorial Approach To Matrix Theory And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Combinatorial Approach To Matrix Theory And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Combinatorial Approach to Matrix Theory and Its Applications

Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. Placing combinatorial and graph-theoretical tools at the forefront of the development of matrix theory, this book uses graphs to explain basic matrix construction, formulas, computations, ideas, and results. It presents material rarely found in other books at this level, including Gersgorin's theorem and its extensions, the Kronecker product of matrices, sign-nonsingular matrices, and the evaluation of the permanent matrix. The authors provide a combinatorial argument for the classical Cayley-Hamilton theorem and a combinatorial proof of the Jordan canonical form of a matrix. They also describe several applications of matrices in electrical engineering, physics, and chemistry.
Combinatorial Matrix Theory

Author: Richard A. Brualdi
language: en
Publisher: Cambridge University Press
Release Date: 1991-07-26
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves.
Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o