Ck 12 Probability And Statistics Advanced Second Edition Volume 1 Of 2


Download Ck 12 Probability And Statistics Advanced Second Edition Volume 1 Of 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ck 12 Probability And Statistics Advanced Second Edition Volume 1 Of 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

CK-12 Probability and Statistics - Advanced (Second Edition), Volume 1 Of 2


CK-12 Probability and Statistics - Advanced (Second Edition), Volume 1 Of 2

Author: CK-12 Foundation

language: en

Publisher: CK-12 Foundation

Release Date: 2010-10


DOWNLOAD





CK-12's Advanced Probability and Statistics-Second Edition is a clear presentation of the basic topics in statistics and probability, but finishes with the rigorous topics an advanced placement course requires. Volume 1 includes the first 6 chapters and covers the following topics: Analyzing Statistical Data, Visualizations of Data, Discrete Probability Distribution, Normal Distribution, and Experimentation.

CK-12 Probability and Statistics - Advanced (Second Edition), Volume 2 Of 2


CK-12 Probability and Statistics - Advanced (Second Edition), Volume 2 Of 2

Author: CK-12 Foundation

language: en

Publisher: CK-12 Foundation

Release Date: 2010-10


DOWNLOAD





All of Statistics


All of Statistics

Author: Larry Wasserman

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-09-17


DOWNLOAD





This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics.