Biomimicry For Optimization Control And Automation


Download Biomimicry For Optimization Control And Automation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Biomimicry For Optimization Control And Automation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Biomimicry for Optimization, Control, and Automation


Biomimicry for Optimization, Control, and Automation

Author: Kevin M. Passino

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-09-08


DOWNLOAD





Biomimicry uses our scienti?c understanding of biological systems to exploit ideas from nature in order to construct some technology. In this book, we focus onhowtousebiomimicryof the functionaloperationofthe “hardwareandso- ware” of biological systems for the development of optimization algorithms and feedbackcontrolsystemsthatextendourcapabilitiestoimplementsophisticated levels of automation. The primary focus is not on the modeling, emulation, or analysis of some biological system. The focus is on using “bio-inspiration” to inject new ideas, techniques, and perspective into the engineering of complex automation systems. There are many biological processes that, at some level of abstraction, can berepresentedasoptimizationprocesses,manyofwhichhaveasa basicpurpose automatic control, decision making, or automation. For instance, at the level of everyday experience, we can view the actions of a human operator of some process (e. g. , the driver of a car) as being a series of the best choices he or she makes in trying to achieve some goal (staying on the road); emulation of this decision-making process amounts to modeling a type of biological optimization and decision-making process, and implementation of the resulting algorithm results in “human mimicry” for automation. There are clearer examples of - ological optimization processes that are used for control and automation when you consider nonhuman biological or behavioral processes, or the (internal) - ology of the human and not the resulting external behavioral characteristics (like driving a car). For instance, there are homeostasis processes where, for instance, temperature is regulated in the human body.

Nature-Inspired Computing for Control Systems


Nature-Inspired Computing for Control Systems

Author: Hiram Eredín Ponce Espinosa

language: en

Publisher: Springer

Release Date: 2015-12-16


DOWNLOAD





The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practitioners in the field of control engineering.

Swarm Stability and Optimization


Swarm Stability and Optimization

Author: Veysel Gazi

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-02-01


DOWNLOAD





Swarming species such as flocks of birds or schools of fish exhibit fascinating collective behaviors during migration and predator avoidance. Similarly, engineered multi-agent dynamic systems such as groups of autonomous ground, underwater, or air vehicles (“vehicle swarms”) exhibit sophisticated collective behaviors while maneuvering. In this book we show how to model and control a wide range of such multi-agent dynamic systems and analyze their collective behavior using both stability theoretic and simulation-based approaches. In particular, we investigate problems such as group aggregation, social foraging, formation control, swarm tracking, distributed agreement, and engineering optimization inspired by swarm behavior.