Applied Summability Methods

Download Applied Summability Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Summability Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applied Summability Methods

Author: M. Mursaleen
language: en
Publisher: Springer Science & Business Media
Release Date: 2014-03-27
This short monograph is the first book to focus exclusively on the study of summability methods, which have become active areas of research in recent years. The book provides basic definitions of sequence spaces, matrix transformations, regular matrices and some special matrices, making the material accessible to mathematicians who are new to the subject. Among the core items covered are the proof of the Prime Number Theorem using Lambert's summability and Wiener's Tauberian theorem, some results on summability tests for singular points of an analytic function, and analytic continuation through Lototski summability. Almost summability is introduced to prove Korovkin-type approximation theorems and the last chapters feature statistical summability, statistical approximation, and some applications of summability methods in fixed point theorems.
Summability Theory and Its Applications

Summability Theory and Its Applications explains various aspects of summability and demonstrates its applications in a rigorous and coherent manner. The content can readily serve as a reference or as a useful series of lecture notes on the subject. This substantially revised new edition includes brand new material across several chapters as well as several corrections, including: the addition of the domain of Cesaro matrix C(m) of order m in the classical sequence spaces to Chapter 4; and introducing the domain of four-dimensional binomial matrix in the spaces of bounded, convergent in the Pringsheim's sense, both convergent in the Pringsheim's sense and bounded, and regularly convergent double sequences, in Chapter 7. Features Investigates different types of summable spaces and computes their dual Suitable for graduate students and researchers with a (special) interest in spaces of single and double sequences, matrix transformations and domains of triangle matrices Can serve as a reference or as supplementary reading in a computational physics course, or as a key text for special Analysis seminars.
Classical and Modern Methods in Summability

Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.