Basics Of Statistical Physics Third Edition


Download Basics Of Statistical Physics Third Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basics Of Statistical Physics Third Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Basics Of Statistical Physics (Third Edition)


Basics Of Statistical Physics (Third Edition)

Author: Harald J W Muller-kirsten

language: en

Publisher: World Scientific

Release Date: 2022-03-16


DOWNLOAD





Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles and attempts to explain these in simple terms, supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Einstein condensation. In this latest edition, apart from a general revision, the topic of thermal radiation has been expanded with a new section on black bodies and an additional chapter on black holes. Other additions are more examples with applications of statistical mechanics in solid state physics and superconductivity. Throughout the presentation, the introduction carries almost all details for calculations.

Basics Of Statistical Physics (Second Edition)


Basics Of Statistical Physics (Second Edition)

Author: Harald J W Muller-kirsten

language: en

Publisher: World Scientific Publishing Company

Release Date: 2013-03-25


DOWNLOAD





Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Einstein condensation. This revised second edition contains an additional chapter on the Boltzmann transport equation along with appropriate applications. Also, more examples have been added throughout, as well as further references to literature.

Statistical Mechanics


Statistical Mechanics

Author: R. K. Pathria

language: en

Publisher: Elsevier

Release Date: 2016-06-30


DOWNLOAD





International Series in Natural Philosophy, Volume 45: Statistical Mechanics discusses topics relevant to explaining the physical properties of matter in bulk. The book is comprised of 13 chapters that primarily focus on the equilibrium states of physical systems. Chapter 1 discusses the statistical basis of thermodynamics, and Chapter 2 covers the elements of ensemble theory. Chapters 3 and 4 tackle the canonical and grand canonical ensemble. Chapter 5 deals with the formulation of quantum statistics, while Chapter 6 reviews the theory of simple gases. Chapters 7 and 8 discuss the ideal Bose and Fermi systems. The book also covers the cluster expansion, pseudopotential, and quantized field methods. The theory of phase transitions and fluctuations are then discussed. The text will be of great use to researchers who wants to utilize statistical mechanics in their work.