Computational Imaging For Scene Understanding


Download Computational Imaging For Scene Understanding PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Imaging For Scene Understanding book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Imaging for Scene Understanding


Computational Imaging for Scene Understanding

Author: Takuya Funatomi

language: en

Publisher: John Wiley & Sons

Release Date: 2024-04-15


DOWNLOAD





Most cameras are inherently designed to mimic what is seen by the human eye: they have three channels of RGB and can achieve up to around 30 frames per second (FPS). However, some cameras are designed to capture other modalities: some may have the ability to capture spectra from near UV to near IR rather than RGB, polarimetry, different times of light travel, etc. Such modalities are as yet unknown, but they can also collect robust data of the scene they are capturing. This book will focus on the emerging computer vision techniques known as computational imaging. These include capturing, processing and analyzing such modalities for various applications of scene understanding.

Machine Learning in Computer Vision


Machine Learning in Computer Vision

Author: Nicu Sebe

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-10-04


DOWNLOAD





The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.

Computational Imaging


Computational Imaging

Author: Ayush Bhandari

language: en

Publisher: MIT Press

Release Date: 2022-10-25


DOWNLOAD





A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.