Basic Concepts Of Algebraic Topology

Download Basic Concepts Of Algebraic Topology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basic Concepts Of Algebraic Topology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Basic Concepts of Algebraic Topology

The text traces the development of algebraic topology form its inception in 1895 through the development of singular homology theory. Primary topics include geometric complexes, simplicial homology groups, simplicial mappings, the fundamental group, covering spaces, and introductory singular homology theory, as well as the higher homotopy groups and the homology sequence--two areas seldom covered in introductory text. The author develops many important applications, including the fixed point theorems of Brouwer and Lefschetz, vector fields on spheres, and the covering homotopy property.
Basic Concepts of Algebraic Topology

Author: F.H. Croom
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.
A Concise Course in Algebraic Topology

Author: J. P. May
language: en
Publisher: University of Chicago Press
Release Date: 1999-09
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.