B Com H

Download B Com H PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get B Com H book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Analysis

Author: Bernd S. W. Schröder
language: en
Publisher: John Wiley & Sons
Release Date: 2008-01-28
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
ADVANCED DISCRETE MATHEMATICS

Author: UDAY SINGH RAJPUT
language: en
Publisher: PHI Learning Pvt. Ltd.
Release Date: 2012-05-26
Written in an accessible style, this text provides a complete coverage of discrete mathematics and its applications at an appropriate level of rigour. The book discusses algebraic structures, mathematical logic, lattices, Boolean algebra, graph theory, automata theory, grammars and recurrence relations. It covers the important topics such as coding theory, Dijkstra’s shortest path algorithm, reverse polish notation, Warshall’s algorithm, Menger’s theorem, Turing machine, and LR(k) parsers, which form a part of the fundamental applications of discrete mathematics in computer science. In addition, Pigeonhole principle, ring homomorphism, field and integral domain, trees, network flows, languages, and recurrence relations. The text is supported with a large number of examples, worked-out problems and diagrams that help students understand the theoretical explanations. The book is intended as a text for postgraduate students of mathematics, computer science, and computer applications. In addition, it will be extremely useful for the undergraduate students of computer science and engineering.
Applications of Mathematics and Informatics in Natural Sciences and Engineering

This book presents peer-reviewed papers from the 4th International Conference on Applications of Mathematics and Informatics in Natural Sciences and Engineering (AMINSE2019), held in Tbilisi, Georgia, in September 2019. Written by leading researchers from Austria, France, Germany, Georgia, Hungary, Romania, South Korea and the UK, the book discusses important aspects of mathematics, and informatics, and their applications in natural sciences and engineering. It particularly focuses on Lie algebras and applications, strategic graph rewriting, interactive modeling frameworks, rule-based frameworks, elastic composites, piezoelectrics, electromagnetic force models, limiting distribution, degenerate Ito-SDEs, induced operators, subgaussian random elements, transmission problems, pseudo-differential equations, and degenerate partial differential equations. Featuring theoretical, practical and numerical contributions, the book will appeal to scientists from various disciplines interested in applications of mathematics and informatics in natural sciences and engineering.