Artificial Intelligence Applications And Reconfigurable Architectures


Download Artificial Intelligence Applications And Reconfigurable Architectures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence Applications And Reconfigurable Architectures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Artificial Intelligence Applications and Reconfigurable Architectures


Artificial Intelligence Applications and Reconfigurable Architectures

Author: Anuradha D. Thakare

language: en

Publisher: John Wiley & Sons

Release Date: 2023-03-14


DOWNLOAD





ARTIFICIAL INTELLIGENCE APPLICATIONS and RECONFIGURABLE ARCHITECTURES The primary goal of this book is to present the design, implementation, and performance issues of AI applications and the suitability of the FPGA platform. This book covers the features of modern Field Programmable Gate Arrays (FPGA) devices, design techniques, and successful implementations pertaining to AI applications. It describes various hardware options available for AI applications, key advantages of FPGAs, and contemporary FPGA ICs with software support. The focus is on exploiting parallelism offered by FPGA to meet heavy computation requirements of AI as complete hardware implementation or customized hardware accelerators. This is a comprehensive textbook on the subject covering a broad array of topics like technological platforms for the implementation of AI, capabilities of FPGA, suppliers’ software tools and hardware boards, and discussion of implementations done by researchers to encourage the AI community to use and experiment with FPGA. Readers will benefit from reading this book because It serves all levels of students and researcher’s as it deals with the basics and minute details of Ecosystem Development Requirements for Intelligent applications with reconfigurable architectures whereas current competitors’ books are more suitable for understanding only reconfigurable architectures. It focuses on all aspects of machine learning accelerators for the design and development of intelligent applications and not on a single perspective such as only on reconfigurable architectures for IoT applications. It is the best solution for researchers to understand how to design and develop various AI, deep learning, and machine learning applications on the FPGA platform. It is the best solution for all types of learners to get complete knowledge of why reconfigurable architectures are important for implementing AI-ML applications with heavy computations. Audience Researchers, industrial experts, scientists, and postgraduate students who are working in the fields of computer engineering, electronics, and electrical engineering, especially those specializing in VLSI and embedded systems, FPGA, artificial intelligence, Internet of Things, and related multidisciplinary projects.

Artificial Intelligence Applications and Reconfigurable Architectures


Artificial Intelligence Applications and Reconfigurable Architectures

Author: Anuradha D. Thakare

language: en

Publisher: John Wiley & Sons

Release Date: 2023-02-14


DOWNLOAD





ARTIFICIAL INTELLIGENCE APPLICATIONS and RECONFIGURABLE ARCHITECTURES The primary goal of this book is to present the design, implementation, and performance issues of AI applications and the suitability of the FPGA platform. This book covers the features of modern Field Programmable Gate Arrays (FPGA) devices, design techniques, and successful implementations pertaining to AI applications. It describes various hardware options available for AI applications, key advantages of FPGAs, and contemporary FPGA ICs with software support. The focus is on exploiting parallelism offered by FPGA to meet heavy computation requirements of AI as complete hardware implementation or customized hardware accelerators. This is a comprehensive textbook on the subject covering a broad array of topics like technological platforms for the implementation of AI, capabilities of FPGA, suppliers’ software tools and hardware boards, and discussion of implementations done by researchers to encourage the AI community to use and experiment with FPGA. Readers will benefit from reading this book because It serves all levels of students and researcher’s as it deals with the basics and minute details of Ecosystem Development Requirements for Intelligent applications with reconfigurable architectures whereas current competitors’ books are more suitable for understanding only reconfigurable architectures. It focuses on all aspects of machine learning accelerators for the design and development of intelligent applications and not on a single perspective such as only on reconfigurable architectures for IoT applications. It is the best solution for researchers to understand how to design and develop various AI, deep learning, and machine learning applications on the FPGA platform. It is the best solution for all types of learners to get complete knowledge of why reconfigurable architectures are important for implementing AI-ML applications with heavy computations. Audience Researchers, industrial experts, scientists, and postgraduate students who are working in the fields of computer engineering, electronics, and electrical engineering, especially those specializing in VLSI and embedded systems, FPGA, artificial intelligence, Internet of Things, and related multidisciplinary projects.

Dynamic Reconfiguration


Dynamic Reconfiguration

Author: Ramachandran Vaidyanathan

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-06-30


DOWNLOAD





Dynamic Reconfiguration: Architectures and Algorithms offers a comprehensive treatment of dynamically reconfigurable computer architectures and algorithms for them. The coverage is broad starting from fundamental algorithmic techniques, ranging across algorithms for a wide array of problems and applications, to simulations between models. The presentation employs a single reconfigurable model (the reconfigurable mesh) for most algorithms, to enable the reader to distill key ideas without the cumbersome details of a myriad of models. In addition to algorithms, the book discusses topics that provide a better understanding of dynamic reconfiguration such as scalability and computational power, and more recent advances such as optical models, run-time reconfiguration (on FPGA and related platforms), and implementing dynamic reconfiguration. The book, featuring many examples and a large set of exercises, is an excellent textbook or reference for a graduate course. It is also a useful reference to researchers and system developers in the area.