Arthur S Invariant Trace Formula And Comparison Of Inner Forms

Download Arthur S Invariant Trace Formula And Comparison Of Inner Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Arthur S Invariant Trace Formula And Comparison Of Inner Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Arthur's Invariant Trace Formula and Comparison of Inner Forms

This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur’s work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur’s proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G’ = GL(n) and its inner form G and for functions with matching orbital integrals.bribr/i/idiviiArthur’s Invariant Trace Formula and Comparison of Inner Forms/div
Harmonic Analysis, the Trace Formula, and Shimura Varieties

Author: Clay Mathematics Institute. Summer School
language: en
Publisher: American Mathematical Soc.
Release Date: 2005
Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.
Geometric Aspects of the Trace Formula

The second of three volumes devoted to the study of the trace formula, these proceedings focus on automorphic representations of higher rank groups. Based on research presented at the 2016 Simons Symposium on Geometric Aspects of the Trace Formula that took place in Schloss Elmau, Germany, the volume contains both original research articles and articles that synthesize current knowledge and future directions in the field. The articles discuss topics such as the classification problem of representations of reductive groups, the structure of Langlands and Arthur packets, interactions with geometric representation theory, and conjectures on the global automorphic spectrum. Suitable for both graduate students and researchers, this volume presents the latest research in the field. Readers of the first volume Families of Automorphic Forms and the Trace Formula will find this a natural continuation of the study of the trace formula.