Applied Machine Learning For Data Science Practitioners


Download Applied Machine Learning For Data Science Practitioners PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Machine Learning For Data Science Practitioners book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Applied Machine Learning for Data Science Practitioners


Applied Machine Learning for Data Science Practitioners

Author: Vidya Subramanian

language: en

Publisher: John Wiley & Sons

Release Date: 2025-04-01


DOWNLOAD





A single-volume reference on data science techniques for evaluating and solving business problems using Applied Machine Learning (ML). Applied Machine Learning for Data Science Practitioners offers a practical, step-by-step guide to building end-to-end ML solutions for real-world business challenges, empowering data science practitioners to make informed decisions and select the right techniques for any use case. Unlike many data science books that focus on popular algorithms and coding, this book takes a holistic approach. It equips you with the knowledge to evaluate a range of techniques and algorithms. The book balances theoretical concepts with practical examples to illustrate key concepts, derive insights, and demonstrate applications. In addition to code snippets and reviewing output, the book provides guidance on interpreting results. This book is an essential resource if you are looking to elevate your understanding of ML and your technical capabilities, combining theoretical and practical coding examples. A basic understanding of using data to solve business problems, high school-level math and statistics, and basic Python coding skills are assumed. Written by a recognized data science expert, Applied Machine Learning for Data Science Practitioners covers essential topics, including: Data Science Fundamentals that provide you with an overview of core concepts, laying the foundation for understanding ML. Data Preparation covers the process of framing ML problems and preparing data and features for modeling. ML Problem Solving introduces you to a range of ML algorithms, including Regression, Classification, Ranking, Clustering, Patterns, Time Series, and Anomaly Detection. Model Optimization explores frameworks, decision trees, and ensemble methods to enhance performance and guide the selection of the most effective model. ML Ethics addresses ethical considerations, including fairness, accountability, transparency, and ethics. Model Deployment and Monitoring focuses on production deployment, performance monitoring, and adapting to model drift.

Machine Learning and Artificial Intelligence in Marketing and Sales


Machine Learning and Artificial Intelligence in Marketing and Sales

Author: Niladri Syam

language: en

Publisher:

Release Date: 2021-03-10


DOWNLOAD





Machine Learning and Artificial Intelligence in Marketing and Sales explores the ideas, and the statistical and mathematical concepts, behind Artificial Intelligence (AI) and machine learning models, as applied to marketing and sales, without getting lost in the details of mathematical derivations and computer programming. Bringing together the qualitative and the technological, and avoiding a simplistic broad overview, this book equips those in the field with methods to implement machine learning and AI models within their own organisations. Bridging the Domain Specialist - Data Scientist Gap (DS-DS Gap) is imperative to the success of this and chapters delve into this subject from a marketing practitioner and the data scientist perspective. Rather than a context-free introduction to AI and machine learning, data scientists implementing these methods for addressing marketing and sales problems will benefit most if they are exposed to how AI and machine learning have been applied specifically in the marketing and sales contexts. Marketing and sales practitioners who want to collaborate with data scientists can be much more effective when they expand their understanding across boundaries to include machine learning and AI.

Real World AI


Real World AI

Author: Alyssa Simpson Rochwerger

language: en

Publisher:

Release Date: 2021-02-17


DOWNLOAD





How can you successfully deploy AI? When AI works, it's nothing short of brilliant, helping companies make or save tremendous amounts of money while delighting customers on an unprecedented scale. When it fails, the results can be devastating. Most AI models never make it out of testing, but those failures aren't random. This practical guide to deploying AI lays out a human-first, responsible approach that has seen more than three times the success rate when compared to the industry average. In Real World AI, Alyssa Simpson Rochwerger and Wilson Pang share dozens of AI stories from startups and global enterprises alike featuring personal experiences from people who have worked on global AI deployments that impact billions of people every day.  AI for business doesn't have to be overwhelming. Real World AI uses plain language to walk you through an AI approach that you can feel confident about-for your business and for your customers.