Applied Econometrics With Sas

Download Applied Econometrics With Sas PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Econometrics With Sas book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applied Econometrics with SAS

Using Applied Econometrics with SAS: Modeling Demand, Supply, and Risk, you will quickly master SAS applications for implementing and estimating standard models in the field of econometrics. This guide introduces you to the major theories underpinning applied demand and production economics. For each of its three main topics—demand, supply, and risk—a concise theoretical orientation leads directly into consideration of specific economic models and econometric techniques, collectively covering the following: Double-log demand systems Linear expenditure systems Almost ideal demand systems Rotterdam models Random parameters logit demand models Frequency-severity models Compound distribution models Cobb-Douglas production functions Translogarithmic cost functions Generalized Leontief cost functions Density estimation techniques Copula models SAS procedures that facilitate estimation of demand, supply, and risk models include the following, among others: PROC MODEL PROC COPULA PROC SEVERITY PROC KDE PROC LOGISTIC PROC HPCDM PROC IML PROC REG PROC COUNTREG PROC QLIM An empirical example, SAS programming code, and a complete data set accompany each econometric model, empowering you to practice these techniques while reading. Examples are drawn from both major scholarly studies and business applications so that professors, graduate students, government economic researchers, agricultural analysts, actuaries, and underwriters, among others, will immediately benefit. This book is part of the SAS Press program.
Getting Started with Data Science

Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.