Applications Of Computational Learning And Iot In Smart Road Transportation System

Download Applications Of Computational Learning And Iot In Smart Road Transportation System PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Computational Learning And Iot In Smart Road Transportation System book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applications of Computational Learning and IoT in Smart Road Transportation System

This book discusses machine learning and AI in real-time image processing for road transportation and traffic management. There is a growing need for affordable solutions that make use of cutting-edge technology like artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT). The efficiency, sustainability, and safety of transport networks can be greatly increased by implementing an Internet of Things (IoT) and machine learning (ML)-based smart road transport system. Install sensors on roadways and intersections to gather data on traffic conditions in real time, such as vehicle density, speed, and flow. Predicting traffic patterns is done by analyzing the gathered data using machine learning algorithms. This can lessen traffic, enhance overall traffic management, and optimize traffic signal timings. Vehicles equipped with Internet of Things devices can have their health monitored in real time. Parameters including lane changes, brake condition, tire pressure, and engine performance can all be monitored by sensors. Based on the gathered data, ML models are used to forecast probable maintenance problems. By scheduling preventive maintenance, failures can be avoided and overall road safety can be increased. Create a smartphone app that would enable drivers to locate parking spots in their area. To forecast parking availability based on past data, the time of day, and special events, apply machine learning algorithms. Integrate Internet of Things (IoT) sensors into fleet vehicles to monitor their performance, location, and fuel consumption. To maximize fleet efficiency, reduce fuel consumption, and plan routes more effectively, apply machine learning algorithms. Train ML models to forecast the quickest and most efficient routes with the help of historical data analysis. Route recommendations for drivers or fleet management systems can be constantly adjusted with real-time updates, which contain real-time data on road conditions, accidents, and construction. To guarantee smooth integration and efficient implementation, government organizations, transportation providers, and technology firms must work together.
Deep Learning and Big Data for Intelligent Transportation

This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today’s technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle’s speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.
Computational Science and Its Applications – ICCSA 2023 Workshops

This nine-volume set LNCS 14104 – 14112 constitutes the refereed workshop proceedings of the 23rd International Conference on Computational Science and Its Applications, ICCSA 2023, held at Athens, Greece, during July 3–6, 2023. The 350 full papers and 29 short papers and 2 PHD showcase papers included in this volume were carefully reviewed and selected from a total of 876 submissions. These nine-volumes includes the proceedings of the following workshops: Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2023); Advanced Processes of Mathematics and Computing Models in Complex Computational Systems (ACMC 2023); Artificial Intelligence supported Medical data examination (AIM 2023); Advanced and Innovative web Apps (AIWA 2023); Assessing Urban Sustainability (ASUS 2023); Advanced Data Science Techniques with applications in Industry and Environmental Sustainability (ATELIERS 2023); Advances in Web Based Learning (AWBL 2023); Blockchain and Distributed Ledgers: Technologies and Applications (BDLTA 2023); Bio and Neuro inspired Computing and Applications (BIONCA 2023); Choices and Actions for Human Scale Cities: Decision Support Systems (CAHSC-DSS 2023); and Computational and Applied Mathematics (CAM 2023).