Deep Learning And Big Data For Intelligent Transportation


Download Deep Learning And Big Data For Intelligent Transportation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning And Big Data For Intelligent Transportation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning and Big Data for Intelligent Transportation


Deep Learning and Big Data for Intelligent Transportation

Author: Khaled R. Ahmed

language: en

Publisher: Springer Nature

Release Date: 2021-04-10


DOWNLOAD





This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today’s technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle’s speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.

Applications of Machine Learning in Big-Data Analytics and Cloud Computing


Applications of Machine Learning in Big-Data Analytics and Cloud Computing

Author: Subhendu Kumar Pani

language: en

Publisher: CRC Press

Release Date: 2022-09-01


DOWNLOAD





Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.

Smart Transportation


Smart Transportation

Author: Guido Dartmann

language: en

Publisher: CRC Press

Release Date: 2021-11-10


DOWNLOAD





The book provides a broad overview of the challenges and recent developments in the field of smart mobility and transportation, including technical, algorithmic and social aspects of smart mobility and transportation. It reviews new ideas for services and platforms for future mobility. New concepts of artificial intelligence and the implementation in new hardware architecture are discussed. In the context of artificial intelligence, new challenges of machine learning for autonomous vehicles and fleets are investigated. The book also investigates human factors and social questions of future mobility concepts. The goal of this book is to provide a holistic approach towards smart transportation. The book reviews new technologies such as the cloud, machine learning and communication for fully atomatized transport, catering to the needs of citizens. This will lead to complete change of concepts in transportion.