Application Of Neural Networks To Adaptive Control Of Nonlinear Systems

Download Application Of Neural Networks To Adaptive Control Of Nonlinear Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Application Of Neural Networks To Adaptive Control Of Nonlinear Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Application of Neural Networks to Adaptive Control of Nonlinear Systems

This book investigates the ability of a neural network (NN) to learn how to control an unknown (nonlinear, in general) system, using data acquired on-line, that is during the process of attempting to exert control. Two algorithms are developed to train the neural network for real-time control applications. The first algorithm is known as Learning by Recursive Least Squares (LRLS) algorithm and the second algorithm is known as Integrated Gradient and Least Squares (IGLS) algorithm. The ability of these algorithms for training the NN controller for real-time control is demonstrated on practical applications and the local convergence and stability requirements of these algorithms are analysed. In addition, network topology, learning algorithms (particularly supervised learning) and neural network control strategies including a new classification system for them, are presented.
Applications of Neural Adaptive Control Technology

This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.
Adaptive Sliding Mode Neural Network Control for Nonlinear Systems

Adaptive Sliding Mode Neural Network Control for Nonlinear Systems introduces nonlinear systems basic knowledge, analysis and control methods, and applications in various fields. It offers instructive examples and simulations, along with the source codes, and provides the basic architecture of control science and engineering. - Introduces nonlinear systems' basic knowledge, analysis and control methods, along with applications in various fields - Offers instructive examples and simulations, including source codes - Provides the basic architecture of control science and engineering