Adaptive Sliding Mode Neural Network Control For Nonlinear Systems


Download Adaptive Sliding Mode Neural Network Control For Nonlinear Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adaptive Sliding Mode Neural Network Control For Nonlinear Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Adaptive Sliding Mode Neural Network Control for Nonlinear Systems


Adaptive Sliding Mode Neural Network Control for Nonlinear Systems

Author: Yang Li

language: en

Publisher: Academic Press

Release Date: 2018-11-16


DOWNLOAD





Adaptive Sliding Mode Neural Network Control for Nonlinear Systems introduces nonlinear systems basic knowledge, analysis and control methods, and applications in various fields. It offers instructive examples and simulations, along with the source codes, and provides the basic architecture of control science and engineering. - Introduces nonlinear systems' basic knowledge, analysis and control methods, along with applications in various fields - Offers instructive examples and simulations, including source codes - Provides the basic architecture of control science and engineering

Robust Adaptive Dynamic Programming


Robust Adaptive Dynamic Programming

Author: Yu Jiang

language: en

Publisher: John Wiley & Sons

Release Date: 2017-04-25


DOWNLOAD





A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.

Advances and Applications in Sliding Mode Control systems


Advances and Applications in Sliding Mode Control systems

Author: Ahmad Taher Azar

language: en

Publisher: Springer

Release Date: 2014-11-01


DOWNLOAD





This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.