Application Of Advanced Optimization Techniques For Healthcare Analytics


Download Application Of Advanced Optimization Techniques For Healthcare Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Application Of Advanced Optimization Techniques For Healthcare Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Application of Advanced Optimization Techniques for Healthcare Analytics


Application of Advanced Optimization Techniques for Healthcare Analytics

Author: Mohamed Abdel-Basset

language: en

Publisher: CRC Press

Release Date: 2023-04-11


DOWNLOAD





Application of Advanced Optimization Techniques for Healthcare Analytics, 1st Edition, is an excellent compilation of current and advanced optimization techniques which can readily be applied to solve different hospital management problems. The healthcare system is currently a topic of significant investigation to make life easier for those who are disabled, old, or sick, as well as for young children. The emphasis of the healthcare system has evolved throughout time due to several emerging beneficial technologies, such as personal digital assistants (PDAs), data mining, the internet of things, metaheuristics, fog computing, and cloud computing. Metaheuristics are strong technology for tackling several optimization problems in various fields, especially healthcare systems. The primary advantage of metaheuristic algorithms is their ability to find a better solution to a healthcare problem and their ability to consume as little time as possible. In addition, metaheuristics are more flexible compared to several other optimization techniques. These algorithms are not related to a specific optimization problem but could be applied to any optimization problem by making some small adaptations to become suitable to tackle it. The successful outcome of this book will enable a decision-maker or practitioner to pick a suitable optimization approach when making decisions to schedule patients under crowding environments with minimized human errors.

Handbook of Healthcare Operations Management


Handbook of Healthcare Operations Management

Author: Brian T. Denton

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-02-28


DOWNLOAD





From the Preface: Collectively, the chapters in this book address application domains including inpatient and outpatient services, public health networks, supply chain management, and resource constrained settings in developing countries. Many of the chapters provide specific examples or case studies illustrating the applications of operations research methods across the globe, including Africa, Australia, Belgium, Canada, the United Kingdom, and the United States. Chapters 1-4 review operations research methods that are most commonly applied to health care operations management including: queuing, simulation, and mathematical programming. Chapters 5-7 address challenges related to inpatient services in hospitals such as surgery, intensive care units, and hospital wards. Chapters 8-10 cover outpatient services, the fastest growing part of many health systems, and describe operations research models for primary and specialty care services, and how to plan for patient no-shows. Chapters 12 – 16 cover topics related to the broader integration of health services in the context of public health, including optimizing the location of emergency vehicles, planning for mass vaccination events, and the coordination among different parts of a health system. Chapters 17-18 address supply chain management within hospitals, with a focus on pharmaceutical supply management, and the challenges of managing inventory for nursing units. Finally, Chapters 19-20 provide examples of important and emerging research in the realm of humanitarian logistics.

Artificial Intelligence in Healthcare


Artificial Intelligence in Healthcare

Author: Adam Bohr

language: en

Publisher: Academic Press

Release Date: 2020-06-21


DOWNLOAD





Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data