Reasoning In Simple Type Theory

Download Reasoning In Simple Type Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Reasoning In Simple Type Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Reasoning in Simple Type Theory

Reasoning in Simple Type Theory is a collection of papers that includes reprints of eight seminal papers in this area as well as thirteen new contributed articles. For the reprints we have chosen a paper by Alonzo Church (introducing his simple theory of types), a paper by Leon Henkin (proving completeness of Church's type theory relative to Henkin's semantics) and some of the most important papers by Peter Andrews. The new articles were contributed by Peter Andrews and his students and collaborators as well as a number of researchers his work has influenced. The volume intends to show the historical development of this important area of formal reasoning up to its current state of art and appears in honor of Peter Andrews on his 70th birthday.
Simple Type Theory

This unique textbook, in contrast to a standard logic text, provides the reader with a logic that actually can be used in practice to express and reason about mathematical ideas. The book is an introduction to simple type theory, a classical higher-order version of predicate logic that extends first-order logic. It presents a practice-oriented logic called Alonzo that is based on Alonzo Church's formulation of simple type theory known as Church's type theory. Unlike traditional predicate logics, Alonzo admits undefined expressions. The book illustrates, using Alonzo, how simple type theory is suited ideally for reasoning about mathematical structures and constructing libraries of mathematical knowledge. Topics and features: Offers the first book-length introduction to simple type theory as a predicate logic Provides the reader with a logic that is close to mathematical practice Presents the tools needed to build libraries of mathematical knowledge Employs two semantics, one for mathematics and one for logic Emphasizes the model-theoretic view of predicate logic Includes several important topics, such as definite description and theory morphisms, not usually found in standard logic textbooks Aimed at students of computing and mathematics at the graduate or upper-undergraduate level, this book is also well-suited for mathematicians, computing professionals, engineers, and scientists who need a practical logic for expressing and reasoning about mathematical ideas. William M. Farmer is a Professor in the Department of Computing and Software at McMaster University in Hamilton, Ontario, Canada.
Basic Simple Type Theory

Author: J. Roger Hindley
language: en
Publisher: Cambridge University Press
Release Date: 1997
Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.