Analytic Inequalities And Their Applications In Pdes

Download Analytic Inequalities And Their Applications In Pdes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analytic Inequalities And Their Applications In Pdes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analytic Inequalities and Their Applications in PDEs

This book presents a number of analytic inequalities and their applications in partial differential equations. These include integral inequalities, differential inequalities and difference inequalities, which play a crucial role in establishing (uniform) bounds, global existence, large-time behavior, decay rates and blow-up of solutions to various classes of evolutionary differential equations. Summarizing results from a vast number of literature sources such as published papers, preprints and books, it categorizes inequalities in terms of their different properties.
Nonlinear Partial Differential Equations with Applications

Author: Tomás Roubicek
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-01-17
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Differential and Integral Inequalities

Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.