Differential And Integral Inequalities

Download Differential And Integral Inequalities PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential And Integral Inequalities book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Differential and Integral Inequalities: Theory and Applications

This volume constitutes the first part of a monograph on theory and applications of differential and integral inequalities. 'The entire work, as a whole, is intended to be a research monograph, a guide to the literature, and a textbook for advanced courses. The unifying theme of this treatment is a systematic development of the theory and applicationsof differential inequalities as well as Volterra integral inequalities. The main tools for applications are the norm and the Lyapunov functions. Familiarity with real and complex analysis, elements of general topology and functional analysis, and differential and integral equations is assumed.
Differential and Integral Inequalities

Author: Wolfgang Walter
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
In 1964 the author's mono graph "Differential- und Integral-Un gleichungen," with the subtitle "und ihre Anwendung bei Abschätzungs und Eindeutigkeitsproblemen" was published. The present volume grew out of the response to the demand for an English translation of this book. In the meantime the literature on differential and integral in equalities increased greatly. We have tried to incorporate new results as far as possible. As a matter of fact, the Bibliography has been almost doubled in size. The most substantial additions are in the field of existence theory. In Chapter I we have included the basic theorems on Volterra integral equations in Banach space (covering the case of ordinary differential equations in Banach space). Corresponding theorems on differential inequalities have been added in Chapter II. This was done with a view to the new sections; dealing with the line method, in the chapter on parabolic differential equations. Section 35 contains an exposition of this method in connection with estimation and convergence. An existence theory for the general nonlinear parabolic equation in one space variable based on the line method is given in Section 36. This theory is considered by the author as one of the most significant recent applications of in equality methods. We should mention that an exposition of Krzyzanski's method for solving the Cauchy problem has also been added. The numerous requests that the new edition include a chapter on elliptic differential equations have been satisfied to some extent.
Differential and Integral Inequalities

Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.