Analog Vlsi And Neural Systems Pdf

Download Analog Vlsi And Neural Systems Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analog Vlsi And Neural Systems Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analog VLSI Implementation of Neural Systems

Author: Carver Mead
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This volume contains the proceedings of a workshop on Analog Integrated Neural Systems held May 8, 1989, in connection with the International Symposium on Circuits and Systems. The presentations were chosen to encompass the entire range of topics currently under study in this exciting new discipline. Stringent acceptance requirements were placed on contributions: (1) each description was required to include detailed characterization of a working chip, and (2) each design was not to have been published previously. In several cases, the status of the project was not known until a few weeks before the meeting date. As a result, some of the most recent innovative work in the field was presented. Because this discipline is evolving rapidly, each project is very much a work in progress. Authors were asked to devote considerable attention to the shortcomings of their designs, as well as to the notable successes they achieved. In this way, other workers can now avoid stumbling into the same traps, and evolution can proceed more rapidly (and less painfully). The chapters in this volume are presented in the same order as the corresponding presentations at the workshop. The first two chapters are concerned with fmding solutions to complex optimization problems under a predefmed set of constraints. The first chapter reports what is, to the best of our knowledge, the first neural-chip design. In each case, the physics of the underlying electronic medium is used to represent a cost function in a natural way, using only nearest-neighbor connectivity.
An Analog VLSI System for Stereoscopic Vision

Author: Misha Mahowald
language: en
Publisher: Springer Science & Business Media
Release Date: 1994-03-31
An Analog VLSI System for Stereoscopic Vision investigates the interaction of the physical medium and the computation in both biological and analog VLSI systems by synthesizing a functional neuromorphic system in silicon. In both the synthesis and analysis of the system, a point of view from within the system is adopted rather than that of an omniscient designer drawing a blueprint. This perspective projects the design and the designer into a living landscape. The motivation for a machine-centered perspective is explained in the first chapter. The second chapter describes the evolution of the silicon retina. The retina accurately encodes visual information over orders of magnitude of ambient illumination, using mismatched components that are calibrated as part of the encoding process. The visual abstraction created by the retina is suitable for transmission through a limited bandwidth channel. The third chapter introduces a general method for interchip communication, the address-event representation, which is used for transmission of retinal data. The address-event representation takes advantage of the speed of CMOS relative to biological neurons to preserve the information of biological action potentials using digital circuitry in place of axons. The fourth chapter describes a collective circuit that computes stereodisparity. In this circuit, the processing that corrects for imperfections in the hardware compensates for inherent ambiguity in the environment. The fifth chapter demonstrates a primitive working stereovision system. An Analog VLSI System for Stereoscopic Vision contributes to both computer engineering and neuroscience at a concrete level. Through the construction of a working analog of biological vision subsystems, new circuits for building brain-style analog computers have been developed. Specific neuropysiological and psychophysical results in terms of underlying electronic mechanisms are explained. These examples demonstrate the utility of using biological principles for building brain-style computers and the significance of building brain-style computers for understanding the nervous system.
Neural Information Processing and VLSI

Author: Bing J. Sheu
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has beenespecially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.