An Introduction To Q Analysis

Download An Introduction To Q Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Q Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to q-analysis

Author: Warren P. Johnson
language: en
Publisher: American Mathematical Soc.
Release Date: 2020-10-06
Starting from simple generalizations of factorials and binomial coefficients, this book gives a friendly and accessible introduction to q q-analysis, a subject consisting primarily of identities between certain kinds of series and products. Many applications of these identities to combinatorics and number theory are developed in detail. There are numerous exercises to help students appreciate the beauty and power of the ideas, and the history of the subject is kept consistently in view. The book has few prerequisites beyond calculus. It is well suited to a capstone course, or for self-study in combinatorics or classical analysis. Ph.D. students and research mathematicians will also find it useful as a reference.
Complexity, Language, and Life: Mathematical Approaches

Author: John L. Casti
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
In May 1984 the Swedish Council for Scientific Research convened a small group of investigators at the scientific research station at Abisko, Sweden, for the purpose of examining various conceptual and mathematical views of the evolution of complex systems. The stated theme of the meeting was deliberately kept vague, with only the purpose of discussing alternative mathematically based approaches to the modeling of evolving processes being given as a guideline to the participants. In order to limit the scope to some degree, it was decided to emphasize living rather than nonliving processes and to invite participants from a range of disciplinary specialities spanning the spectrum from pure and applied mathematics to geography and analytic philosophy. The results of the meeting were quite extraordinary; while there was no intent to focus the papers and discussion into predefined channels, an immediate self-organizing effect took place and the deliberations quickly oriented themselves into three main streams: conceptual and formal structures for characterizing sys tem complexity; evolutionary processes in biology and ecology; the emergence of complexity through evolution in natural lan guages. The chapters presented in this volume are not the proceed ings of the meeting. Following the meeting, the organizers felt that the ideas and spirit of the gathering should be preserved in some written form, so the participants were each requested to produce a chapter, explicating the views they presented at Abisko, written specifically for this volume. The results of this exercise form the volume you hold in your hand.
Basic Modern Theory of Linear Complex Analytic $q$-Difference Equations

Author: Jacques Sauloy
language: en
Publisher: American Mathematical Society
Release Date: 2024-11-06
The roots of the modern theories of differential and $q$-difference equations go back in part to an article by George D. Birkhoff, published in 1913, dealing with the three ?sister theories? of differential, difference and $q$-difference equations. This book is about $q$-difference equations and focuses on techniques inspired by differential equations, in line with Birkhoff's work, as revived over the last three decades. It follows the approach of the Ramis school, mixing algebraic and analytic methods. While it uses some $q$-calculus and is illustrated by $q$-special functions, these are not its main subjects. After a gentle historical introduction with emphasis on mathematics and a thorough study of basic problems such as elementary $q$-functions, elementary $q$-calculus, and low order equations, a detailed algebraic and analytic study of scalar equations is followed by the usual process of transforming them into systems and back again. The structural algebraic and analytic properties of systems are then described using $q$-difference modules (Newton polygon, filtration by the slopes). The final chapters deal with Fuchsian and irregular equations and systems, including their resolution, classification, Riemann-Hilbert correspondence, and Galois theory. Nine appendices complete the book and aim to help the reader by providing some fundamental yet not universally taught facts. There are 535 exercises of various styles and levels of difficulty. The main prerequisites are general algebra and analysis as taught in the first three years of university. The book will be of interest to expert and non-expert researchers as well as graduate students in mathematics and physics.