An Introduction To Acceptance Sampling And Spc With R

Download An Introduction To Acceptance Sampling And Spc With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Acceptance Sampling And Spc With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Acceptance Sampling and SPC with R

An Introduction to Acceptance Sampling and SPC with R is an introduction to statistical methods used in monitoring, controlling and improving quality. Topics covered include acceptance sampling; Shewhart control charts for Phase I studies; graphical and statistical tools for discovering and eliminating the cause of out-of-control-conditions; Cusum and EWMA control charts for Phase II process monitoring; and the design and analysis of experiments for process troubleshooting and discovering ways to improve process output. Origins of statistical quality control and the technical topics presented in the remainder of the book are those recommended in the ANSI/ASQ/ISO guidelines and standards for industry. The final chapter ties everything together by discussing modern management philosophies that encourage the use of the technical methods presented earlier. In the modern world sampling plans and the statistical calculations used in statistical quality control are done with the help of computers. As an open source high-level programming language with flexible graphical output options, R runs on Windows, Mac and Linux operating systems, and has add-on packages that equal or exceed the capability of commercial software for statistical methods used in quality control. In this book, we will focus on several R packages. In addition to demonstrating how to use R for acceptance sampling and control charts, this book will concentrate on how the use of these specific tools can lead to quality improvements both within a company and within their supplier companies. This would be a suitable book for a one-semester undergraduate course emphasizing statistical quality control for engineering majors (such as manufacturing engineering or industrial engineering), or a supplemental text for a graduate engineering course that included quality control topics.
Introduction to Statistical Process Control

A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
Applied Machine Learning for Data Science Practitioners

Author: Vidya Subramanian
language: en
Publisher: John Wiley & Sons
Release Date: 2025-04-01
A single-volume reference on data science techniques for evaluating and solving business problems using Applied Machine Learning (ML). Applied Machine Learning for Data Science Practitioners offers a practical, step-by-step guide to building end-to-end ML solutions for real-world business challenges, empowering data science practitioners to make informed decisions and select the right techniques for any use case. Unlike many data science books that focus on popular algorithms and coding, this book takes a holistic approach. It equips you with the knowledge to evaluate a range of techniques and algorithms. The book balances theoretical concepts with practical examples to illustrate key concepts, derive insights, and demonstrate applications. In addition to code snippets and reviewing output, the book provides guidance on interpreting results. This book is an essential resource if you are looking to elevate your understanding of ML and your technical capabilities, combining theoretical and practical coding examples. A basic understanding of using data to solve business problems, high school-level math and statistics, and basic Python coding skills are assumed. Written by a recognized data science expert, Applied Machine Learning for Data Science Practitioners covers essential topics, including: Data Science Fundamentals that provide you with an overview of core concepts, laying the foundation for understanding ML. Data Preparation covers the process of framing ML problems and preparing data and features for modeling. ML Problem Solving introduces you to a range of ML algorithms, including Regression, Classification, Ranking, Clustering, Patterns, Time Series, and Anomaly Detection. Model Optimization explores frameworks, decision trees, and ensemble methods to enhance performance and guide the selection of the most effective model. ML Ethics addresses ethical considerations, including fairness, accountability, transparency, and ethics. Model Deployment and Monitoring focuses on production deployment, performance monitoring, and adapting to model drift.