Algorithms For Measurement Invariance Testing


Download Algorithms For Measurement Invariance Testing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithms For Measurement Invariance Testing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Algorithms for Measurement Invariance Testing


Algorithms for Measurement Invariance Testing

Author: Veronica Cole

language: en

Publisher: Cambridge University Press

Release Date: 2023-12-21


DOWNLOAD





Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In the absence of such biases, measurement invariance is achieved; if this bias is present, differential item functioning (DIF) would occur. This Element introduces the testing of measurement invariance/DIF through nonlinear factor analysis. After introducing models which are used to study these questions, the Element uses them to formulate different definitions of measurement invariance and DIF. It also focuses on different procedures for locating and quantifying these effects. The Element finally provides recommendations for researchers about how to navigate these options to make valid inferences about measurement in their own data.

Identifying and Minimizing Measurement Invariance among Intersectional Groups


Identifying and Minimizing Measurement Invariance among Intersectional Groups

Author: Rachel A. Gordon

language: en

Publisher: Cambridge University Press

Release Date: 2023-07-06


DOWNLOAD





This Element demonstrates how and why the alignment method can advance measurement fairness in developmental science. It explains its application to multi-category items in an accessible way, offering sample code and demonstrating an R package that facilitates interpretation of such items' multiple thresholds. It features the implications for group mean differences when differences in the thresholds between categories are ignored because items are treated as continuous, using an example of intersectional groups defined by assigned sex and race/ethnicity. It demonstrates the interpretation of item-level partial non-invariance results and their implications for group-level differences and encourages substantive theorizing regarding measurement fairness.

Measurement Invariance


Measurement Invariance

Author: Rens Van De Schoot

language: en

Publisher: Frontiers Media SA

Release Date: 2015-10-05


DOWNLOAD





Multi-item surveys are frequently used to study scores on latent factors, like human values, attitudes and behavior. Such studies often include a comparison, between specific groups of individuals, either at one or multiple points in time. If such latent factor means are to be meaningfully compared, the measurement structures including the latent factor and their survey items should be stable across groups and/or over time, that is ‘invariant’. Recent developments in statistics have provided new analytical tools for assessing measurement invariance (MI). The aim of this special issue is to provide a forum for a discussion of MI, covering some crucial ‘themes’: (1) ways to assess and deal with measurement non-invariance; (2) Bayesian and IRT methods employing the concept of approximate measurement invariance; and (3) new or adjusted approaches for testing MI to fit increasingly complex statistical models and specific characteristics of survey data. The special issue started with a kick-off meeting where all potential contributors shared ideas on potential papers. This expert workshop was organized at Utrecht University in The Netherlands and was funded by the Netherlands Organization for Scientific Research (NWO-VENI-451-11-008). After the kick-off meeting the authors submitted their papers, all of which were reviewed by experts in the field. The papers in the eBook are listed in alphabetical order, but in the editorial the papers are introduced thematically. Although it is impossible to cover all areas of relevant research in the field of MI, papers in this eBook provide insight on important aspects of measurement invariance. We hope that the discussions included in this special issue will stimulate further research on MI and facilitate further discussions to support the understanding of the role of MI in multi-item surveys.