Aims Power Inverters

Download Aims Power Inverters PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Aims Power Inverters book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Grid-Forming Power Inverters

Grid-Forming Power Inverters: Control and Applications is the first book dedicated to addressing the operation principles, grid codes, modelling and control of grid-forming power inverters. The book initially discusses the need for this technology due to the substantial annual integration of inverter-based renewable energy resources. The key differences between the traditional grid-following and the emerging grid-forming inverters technologies are explained. Then, the book explores in detail various topics related to grid-forming power inverters, including requirements and grid standards, modelling, control, damping power system oscillations, dynamic stability under large fault events, virtual oscillator-controlled grid-forming inverters, grid-forming inverters interfacing battery energy storage, and islanded operation of grid-forming inverters. Features: Explains the key differences between grid-following and grid-forming inverters Explores the requirements and grid standards for grid-forming inverters Provides detailed modelling of virtual synchronous generators Explains various control strategies for grid-forming inverters Investigates damping of power system oscillations using grid-forming converters Elaborates on the dynamic stability of grid-forming inverters under large fault events Focuses on practical applications
Multilevel Inverters

Multilevel Inverters: Control Methods and Power Electronics Applications provides a suite of powerful control methods for conventional and emerging inverter topologies instrumentalized in power electronics applications. It introduces readers to the conventional pulse width modulation control of multilevel voltage source inverter topologies before moving through more advanced approaches including hysteresis control, proportional resonance control, and model predictive control. Later chapters survey the power electronics connection between device topologies and control methods, particularly focusing on conversion in renewable energy systems, electric vehicles, static VAR compensators and solid-state transformers. - Examines modern design configurations for multilevel inverter controllers, emerging control methods, and their applications - Presents detailed application examples of multilevel inverters deployed in modern and recent power electronic areas including renewable energy sources, electric vehicles, and grid management - Discusses deployment and development of future power converter implementation
Power Electronic Converters Modeling and Control

Author: Seddik Bacha
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-12
Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers because of their significance in grid-connected applications; and · nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.